Return to search

Application of battery energy storage in the Québec interconnection

Le Système Stockage de l'Énergie par Batterie ou Batterie de Stockage d’Énergie (BSE) offre de formidables atouts dans les domaines de la production, du transport, de la distribution et de la consommation d’énergie électrique. Cette technologie est notamment considérée par plusieurs opérateurs à travers le monde entier, comme un nouveau dispositif permettant d'injecter d’importantes quantités d’énergie renouvelable d’une part et d’autre part, en tant que composante essentielle aux grands réseaux électriques. De plus, d’énormes avantages peuvent être associés au déploiement de la technologie du BSE aussi bien dans les réseaux intelligents que pour la réduction de l’émission des gaz à effet de serre, la réduction des pertes marginales, l’alimentation de certains consommateurs en source d’énergie d’urgence, l’amélioration de la gestion de l’énergie, et l’accroissement de l’efficacité énergétique dans les réseaux. Cette présente thèse comprend trois étapes à savoir : l’Étape 1 - est relative à l’utilisation de la BSE en guise de réduction des pertes électriques ; l’Étape 2 - utilise la BSE comme élément de réserve tournante en vue de l’atténuation de la vulnérabilité du réseau ; et l’Étape 3 - introduit une nouvelle méthode d’amélioration des oscillations de fréquence par modulation de la puissance réactive, et l’utilisation de la BSE pour satisfaire la réserve primaire de fréquence. La première Étape, relative à l'utilisation de la BSE en vue de la réduction des pertes, est elle-même subdivisée en deux sous-étapes dont la première est consacrée à l’allocation optimale et le seconde, à l’utilisation optimale. Dans la première sous-étape, l’Algorithme génétique NSGA-II (Non-dominated Sorting Genetic Algorithm II) a été programmé dans CASIR, le Super-Ordinateur de l’IREQ, en tant qu’algorithme évolutionniste multiobjectifs, permettant d’extraire un ensemble de solutions pour un dimensionnement optimal et un emplacement adéquat des multiple unités de BSE, tout en minimisant les pertes de puissance, et en considérant en même temps la capacité totale des puissances des unités de BSE installées comme des fonctions objectives. La première sous-étape donne une réponse satisfaisante à l’allocation et résout aussi la question de la programmation/scheduling dans l’interconnexion du Québec. Dans le but de réaliser l’objectif de la seconde sous-étape, un certain nombre de solutions ont été retenues et développées/implantées durant un intervalle de temps d’une année, tout en tenant compte des paramètres (heure, capacité, rendement/efficacité, facteur de puissance) associés aux cycles de charge et de décharge de la BSE, alors que la réduction des pertes marginales et l’efficacité énergétique constituent les principaux objectifs. Quant à la seconde Étape, un nouvel indice de vulnérabilité a été introduit, formalisé et étudié ; indice qui est bien adapté aux réseaux modernes équipés de BES. L’algorithme génétique NSGA-II est de nouveau exécuté (ré-exécuté) alors que la minimisation de l’indice de vulnérabilité proposé et l’efficacité énergétique représentent les principaux objectifs. Les résultats obtenus prouvent que l’utilisation de la BSE peut, dans certains cas, éviter des pannes majeures du réseau. La troisième Étape expose un nouveau concept d’ajout d’une inertie virtuelle aux réseaux électriques, par le procédé de modulation de la puissance réactive. Il a ensuite été présenté l’utilisation de la BSE en guise de réserve primaire de fréquence. Un modèle générique de BSE, associé à l’interconnexion du Québec, a enfin été proposé dans un environnement MATLAB. Les résultats de simulations confirment la possibilité de l’utilisation des puissances active et réactive du système de la BSE en vue de la régulation de fréquence. / The Battery Energy Storage (BES) offers significant potential benefits at generation, transmission, distribution, and consumption levels of power systems. More specifically, this technology is considered by various operators around the globe, as a component of incorporating high amounts of renewable energy and as a key tool for large-scale power networks. In addition, other highly valued benefits can be captured by deploying BES technologies in smart grid such as facilitating power management, reducing green house gas emissions, reducing marginal losses, providing emergency power source for some users, and increasing energy efficiency in networks. This thesis comprises three phases: phase 1) application of BES for loss reduction, phase 2) application of BES as spinning reserve for vulnerability mitigation, phase 3) introducing a new method for improving frequency oscillation using reactive power modulation and application of BES for primary frequency reserve. The phase 1, application of BES for loss reduction is divided itself in two steps: step one: optimal allocation and step two: optimal utilization. In step one, Non-dominated Sorting Genetic Algorithm II (NSGA-II) has been coded on Centre de CAlcul Scientifique de l'IREQ (CASIR), the supercomputer of IREQ, as multi-objective evolutionary algorithm that extracts a set of optimal solution for optimal sizing and siting of multiple BESs while minimization of power losses and the total installed capacity of the BES units are simultaneous objective functions. For the sake of step two, a number of solutions are chosen and developed over one year taking into account the hour/rate/efficiency/power factor of the charge and discharge modes while marginal loss reduction or energy efficiency improvement are set as main goals. Phase 1 provides a complete answer for BES allocation and scheduling problem on Québec interconnection. Concerning the phase 2, a new vulnerability index has been introduced, formulated and studied which is suitable for modern power systems that comprise BESs. The NSGA-II is re-executed while minimization of proposed vulnerability index and total installed capacity are main goals. The results reveal that application of BES may prevent major blackouts in some cases. The phase 3 presents a novel idea for adding virtual inertia to power systems using reactive power modulations. The phase 3 also presents a primary study on application of BESs for primary frequency reserve. Generic battery model is introduced to simple Quebec interconnection model in MATLAB. Simulation results confirm the applicability of both active and reactive powers of BES architecture for frequency regulation.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26903
Date24 April 2018
CreatorsMoeini, Ali
ContributorsKamwa, Innocent, Le-Huy, Hoang
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxxvi, 307 pages), application/pdf
CoverageQuébec (Province)
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0034 seconds