Mitochondrial diseases are caused by gene mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) and they are among one of the most common forms of inherited disorders. It is estimated that 1 out of every 5000 individuals will develop a mitochondrial disease in their lifetime. Due to the crucial and widespread functionality of mitochondria in human cells, prolonged diseases of the mitochondria affect cells of the brain, heart, liver, muscles and kidneys and can lead to multi-organ failure in some patients. Inherited or acquired mitochondrial diseases can present at any stage of life, affecting both children and adults. Since its discovery, the mitochondrial genome has been analyzed and sequenced with increasing ease and this process has helped recognize various mitochondrial disorders as the root of genetic diseases.
This paper will explore the unique properties of the mitochondrion and its genome, examine the relationship between mtDNA and some common myopathies such as Leigh syndrome (LS) or maternally inherited Leigh syndrome (MILS), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) in order to explore commonalities and differences in their inheritance patterns and their effect on mitochondrial function. Although studies have shown that these conditions generally affect the process of oxidative phosphorylation in mitochondria, because of the wide variety of presentations of this disease, further research is needed to understand the different etiologies, as well as to explore novel therapies to treat them.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/47456 |
Date | 03 November 2023 |
Creators | Olukorede, Opeoluwa |
Contributors | Offner, Gwynneth, Flynn, David |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.002 seconds