Return to search

A Model Predictive Control Approach to Roll Stability of a Scaled Crash Avoidance Vehicle

In this paper, a roll stability controller (RSC) is presented based on an eight degree of freedom dynamic vehicle model. The controller is designed for and tested on a scaled vehicle performing obstacle avoidance maneuvers on a populated test track. A rapidly-exploring random tree (RRT) algorithm is used for the vehicle to execute a trajectory around an obstacle, and examines the geographic, non-homonymic, and dynamic constraints to maneuver around the obstacle. A model predictive controller (MPC) uses information about the vehicle state and, based on a weighted performance measure, generates an optimal trajectory around the obstacle. The RSC uses the standard vehicle state sensors: four wheel mounted encoders, a steering angle sensor, and a six degree of freedom inertial measurement unit (IMU). An emphasis is placed on the mitigation of rollover and spin-out, however if a safe maneuver is not found and a collision is inevitable, the program will run a brake command to reduce the vehicle speed before impact. The trajectory is updated at a rate of 20 Hz, providing improved stability and maneuverability for speeds up to 10 ft/s and turn angles of up to 20°.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1810
Date01 June 2012
CreatorsNoxon, Nikola John Linn
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0017 seconds