L’exploration expérimentale de l’intrication quantique est un domaine de recherche très actif actuellement. Les systèmes d’électrodynamique quantique en cavité permettent notamment de générer de l’intrication dans des ensembles de plusieurs dizaines de particules, grâce à l’interaction à longue portée fournie par un mode du champ électromagnétique. Mon travail de thèse a consisté à mettre en place un nouveau dispositif expérimental afin d’assurer le chargement rapide et fiable d’une cavité optique miniaturisée à l’intérieur de laquelle l’adressage et la détection d’atomes uniques viennent s’ajouter à l’interaction collective fournie par le mode de la cavité. La tomographie quantique des états intriqués requière l’acquisition d’un grand nombre de données expérimentales, un soin tout particulier doit donc être porté quand à la stabilité et à la rapidité de répétition de l’expérience. Pour satisfaire à ces critères, un système de lasers particulièrement compacts et robustes, a été conçu et fabriqué afin d’assurer le refroidissement et l’interaction avec les atomes. Pour permettre la rapidité de répétition de l’expérience, une source de rubidium est utilisée en mode impulsionnel dans l’unique cellule à vide. Elle permet de moduler temporellement la pression atomique en fonction des besoins de l’expérience. Un chargement prompt du piège magnéto-optique est alors possible sans réduire la durée de vie des atomes dans la cavité, au moment où se déroulent les expériences. Le transport des atomes entre leur position de capture et le centre de la cavité s’effectue grâce à un piège dipolaire, déplacé selon son axe fort de confinement à l’aide d’un déflecteur acousto-optique. Cela permet un déplacement rapide, de l’ordre de la centaine de millisecondes pour une distance de 1,5 cm. Grâce à cette combinaison de techniques, ce nouveau dispositif expérimental devrait donner accès à la physique riche des systèmes intriqués à plusieurs dizaines de particules. / The study of quantum entanglement is a very active research field. Cavity quantum electrodynamics systems are versatile tools allowing for instance entanglement in mesoscopic systems, that is to say with about a hundred particles. The purpose of the new experimental setup built during this thesis is to reach the single atom manipulation and detection level while working with mesoscopic ensembles, collectively coupled to the cavity mode. Toward this goal, three new experimental techniques have been developed to enable reliable and fast data acquisition rate, essential to reconstruct entangled states by quantum tomography means. First, robust extended cavity diode lasers have been constructed, allowing acquisitions that last for days. Then, a pulsed atomic source has been set up, it combines the advantages of fast magneto-optical trap loading and long lifetime in conservative traps by modulating the pressure inside a single vacuum chamber apparatus on a short timescale. Finally, to ensure the fast transport of cold atomic ensembles from the magneto-optical trap to the cavity position, a dipole trap moved with an acousto-optic deflector has been built. This allows a transport over few centimetres leaving the full optical access to the atomic cloud for other manipulations. Thanks to this new experimental setup, we hope to contribute to the understanding of the rich physics lying beyond multi-particle entangled systems.
Identifer | oai:union.ndltd.org:theses.fr/2016PA066100 |
Date | 20 May 2016 |
Creators | Lebouteiller, Claire |
Contributors | Paris 6, Reichel, Jakob |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds