Return to search

Propriété (T) de Kazhdan relative à l'espace / Kazhdan's property (T) relative to the space

L'objet de cette thèse est l'étude de la propriété (T) relative à l'espace (ou rigidité au sens de Popa) d'actions de groupes dénombrables sur des espaces de probabilité standards préservant une mesure de probabilité (pmp). Ces dix dernières années, la propriété (T) relative à l'espace a permis de résoudre de nombreux problèmes dans le cadre de la théorie ergodique des actions de groupes et des algèbres de von Neumann. Néanmoins, certains aspects théoriques de cette notion restent largement mystérieux. Une question encore ouverte consiste à déterminer les groupes admettant une action libre ergodique pmp ayant la propriété (T) relative à l'espace. Nous montrons dans cette thèse que les groupes de type fini non-moyennables linéaires sur un corps de caractéristique nulle admettent une action ergodique pmp possédant cette propriété. Si le groupe est à radical résoluble trivial, l'action que nous construisons est aussi libre.Pour ce faire, nous commençons par étudier la stabilité de la propriété (T) relative à l'espace vis-à-vis de différentes constructions d'actions pmp  : produit, restriction, co-induction, induction. Puis, nous donnons une caractérisation de la propriété (T) relative à l'espace dans le cas d'actions pmp sur un espace homogène G/Λ de groupe de Lie p-adique d'un sous-groupe dénombrable Γ du groupe des transformations affines de G stabilisant le réseau Λ. L'action de Γ sur G/Λ a la propriété (T) relative à l'espace si et seulement s'il n'existe pas de mesure de probabilité Γ-invariante sur l'espace projectif de l'algèbre de Lie de G. Par ailleurs, nous étudions le cas d'actions de groupes par automorphismes sur des nilvariétés définies par des graphes finis. / The purpose of this thesis is to study the Kazhdan's property (T) relative to the space (also called rigidity in the sense of Popa) of probability measure preserving actions of countable groups on standard probability measure spaces (p.m.p.).This last decade, some problems in the theory of ergodic theory and von Neumann algebras were solved using the property (T) relative to the space. However, the theoretical aspects of its study remain largely mysterious. An open question asks which groups admit a p.m.p. free and ergodic action which has the property (T) relative to the space. We show in this dissertation that every finitely-generated non-amenable linear groups over a field of characteristic zero admits a p.m.p. ergodic action which has this property. If this group has trivial solvable radical, we prove that these actions can be chosen to be free.In order to obtain these results, we start by investigating natural questions concerning the stability of the property (T) relative to the space through standard constructions : products, restriction, co-induction, induction. Then, we give a criterion for the property (T) relative to the space to hold in the case of p.m.p. actions on homogeneous space G/ Λ of a p-adic Lie group for a countable subgroup Γ of affine transformations of G stabilizing the lattice Λ. The action of Γ on G/Λ has the property (T) relative to the space if and only if the induced action of Γ on the projective space of the Lie algebra of G admits no invariant probability measure.Moreover, we study the case of actions by automorphims on nilvarietes defined by finite graphs.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEN010
Date28 June 2016
CreatorsBouljihad, Mohamed
ContributorsLyon, Gaboriau, Damien, Bekka, Bachir
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds