abstract: This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that simulate individual daily activity-travel patterns through the prediction of day-level and tour-level activity agendas. These tour level activity-based models adopt a discrete time representation of activities and sequence the activities within tours using rule-based heuristics. An alternate stream of activity-based model systems mostly confined to the research arena are activity scheduling systems that adopt an evolutionary continuous-time approach to model activity participation subject to time-space prism constraints. In this research, a tour characterization framework capable of simulating and sequencing activities in tours along the continuous time dimension is developed and implemented using readily available travel survey data. The proposed framework includes components for modeling the multitude of secondary activities (stops) undertaken as part of the tour, the time allocated to various activities in a tour, and the sequence in which the activities are pursued.
Second, the dissertation focuses on the implementation of a vehicle fleet composition model component that can be used not only to simulate the mix of vehicle types owned by households but also to identify the specific vehicle that will be used for a specific tour. Virtually all of the activity-based models in practice only model the choice of mode without due consideration of the type of vehicle used on a tour. In this research effort, a comprehensive vehicle fleet composition model system is developed and implemented. In addition, a primary driver allocation model and a tour-level vehicle type choice model are developed and estimated with a view to advancing the ability to track household vehicle usage through the course of a day within activity-based travel model systems. It is envisioned that these advances will enhance the fidelity of activity-based travel model systems in practice. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2014
Identifer | oai:union.ndltd.org:asu.edu/item:27462 |
Date | January 2014 |
Contributors | Garikapati, Venu Madhav (Author), Pendyala, Ram M (Advisor), Zhou, Xuesong (Committee member), Lou, Yingyan (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 285 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0023 seconds