Return to search

Medium Access Control in Impulse-Based Ultra Wideband Ad Hoc and Sensor Networks

This thesis investigates distributed medium access control (MAC) protocols custom tailored to both impulse-based ultra wideband (I-UWB) radios and to large ad hoc and sensor networks. I-UWB is an attractive radio technology for large ad hoc and sensor networks due to its robustness to multipath fading effects, sub-centimeter ranging ability, and low-cost, low-power hardware. Current medium access control (MAC) protocols for I-UWB target small wireless personal area networks (WPANs) and cellular networks, but they are not suitable for large, multihop ad hoc and sensor networks. Therefore, this paper proposes a new type of MAC protocol that enables ad hoc and sensor networks to realize the benefits of I-UWB radios. First, we propose a method to overcome the challenges of quickly, reliably, and efficiently sensing medium activity in an ultra wideband network. This provides a base MAC protocol similar to carrier sense multiple access (CSMA) in narrowband systems. Next, we propose to exploit the unique signaling of I-UWB to improve performance over the base MAC protocol without the associated overhead of similar improvements in narrowband systems. I-UWB enables a distributed multichannel MAC protocol, which improves throughput. I-UWB also facilitates a busy signal MAC protocol, which reduces wasted energy from corrupt packets. Finally, because the I-UWB Physical Layer and MAC Layer affect the network and application layers, we propose a cross-layer adaptive system that optimizes performance. Physical Layer simulations show that both the base protocol and the improvements are practical for an I-UWB radio. Networks level simulations characterize the performance of the proposed MAC protocols and compare them to existing MAC protocols. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/27594
Date17 August 2005
CreatorsAugust, Nathaniel J.
ContributorsElectrical and Computer Engineering, Ha, Dong Sam, Armstrong, James R., Tront, Joseph G., Lockhart, Thurmon E., Reed, Jeffrey H.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationDissertation_NA_final_print.pdf

Page generated in 0.0032 seconds