Cette thèse, réalisée en coopération avec l'ONERA, concerne la reconnaissance active d'objets 3D par un agent autonome muni d'une caméra d'observation. Alors qu'en reconnaissance passive les modalités d'acquisitions des observations sont imposées et génèrent parfois des ambiguïtés, la reconnaissance active exploite la possibilité de contrôler en ligne ces modalités d'acquisition au cours d'un processus d'inférence séquentiel dans le but de lever l'ambiguïté. L'objectif des travaux est d'établir des stratégies de planification dans l'acquisition de l'information avec le souci d'une mise en œuvre réaliste de la reconnaissance active. Le cadre de l'apprentissage statistique est pour cela mis à profit. La première partie des travaux se consacre à apprendre à planifier. Deux contraintes réalistes sont prise en compte : d'une part, une modélisation imparfaite des objets susceptible de générer des ambiguïtés supplémentaires - d'autre part, le budget d'apprentissage est coûteux (en temps, en énergie), donc limité. La deuxième partie des travaux s'attache à exploiter au mieux les observations au cours de la reconnaissance. La possibilité d'une reconnaissance active multi-échelles est étudiée pour permettre une interprétation au plus tôt dans le processus séquentiel d'acquisition de l'information. Les observations sont également utilisées pour estimer la pose de l'objet de manière robuste afin d'assurer la cohérence entre les modalités planifiées et celles réellement atteintes par l'agent visuel.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00696044 |
Date | 23 November 2011 |
Creators | Defretin, Joseph |
Publisher | École normale supérieure de Cachan - ENS Cachan |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds