Return to search

Kolokacioni postupci za rešavanje singularno perturbovanih problema / Collocation methods for solving singular perturbation problems

<p>U disertaciji su razvijeni kolokacioni postupci sa C<sup>1</sup>- splajnovima&nbsp;proizvoljnog stepena za re&scaron;avanje singularno-perturbovanih problema&nbsp;reakcije-difuzije u jednoj i dve dimenzije. U 1D, pokazano je da kolokacioni&nbsp;postupak sa kvadratnim C<sup>1</sup>-&nbsp;splajnom na modifikovanoj &Scaron;i&scaron;kinovoj mreži,&nbsp;konvergira uniformno, sa redom konvergencije skoro dva. Takođe, na gradiranim mrežama, ovaj metod ima red konvergencije dva &ndash; uniformno do na logaritamski faktor. Aposterirona ocena je postignuta za kolokacione postupke sa C<sup>1</sup>- splajnovima proizvoljnog stepena na proizvoljnoj mreži. Ova ocena je iskori&scaron;ćena i za kreiranje adaptivnih mreža. Numerički rezultati povtrđuju dobijene ocene. U 2D su razmatrane kolokacije sa bikvadratnim splajnovima. Aposterirona ocena gre&scaron;ke je postignuta. Numerički rezultati potvrđuju dobijene teorijske rezultate.<br />&nbsp;</p> / <p>Collocations with arbitrary order C<sup>1</sup>-splines for a singularly perturbed reaction-diffusion problem in one dimension and two dimensions are studied. In 1D, collocation with quadratic C<sup>1</sup>-splines is shown to be almost second order accurate on modified Shishkin mesh in the maximum norm, uniformly in the perturbation parameter. Also, we establish a second-order maximum norm a priori estimate on recursively graded mesh uniformly up to a logarithmic factor in the singular perturbation parameter. A posteriori error bounds are derived for the collocation method with arbitrary order C<sup>1</sup>-splines on arbitrary meshes. These bounds are used to drive an adaptivemeshmoving algorithm. An adaptive algorithm is devised&nbsp;to resolve the boundary layers. Numerical results are presented. In 2D, collocation with biquadratic C<sup>1</sup>-spline is studied. Robust a posteriori error bounds are derived for the collocation method on arbitrary meshes. Numerical experiments completed our theoretical results.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)96047
Date22 December 2015
CreatorsRadojev Goran
ContributorsHerceg Dragoslav, Zarin Helena, Teofanov Ljiljana, Linss Torsten
PublisherUniverzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageSerbian
Detected LanguageUnknown
TypePhD thesis

Page generated in 0.0021 seconds