Return to search

Novel adenoviral vectored vaccines and the implications of viral diversity in therapeutic strategies against Hepatitis C Virus infection

Hepatitis C virus (HCV) is a major global pathogen estimated to infect over 170 million people worldwide. A recent study has shown that vaccination with adenoviral vectors, based on rare human and simian serotypes encoding the non-structural (NS) proteins of HCV, induces highly potent, multi-specific and durable T cell responses in healthy human volunteers. In this thesis I assess the safety and immunogenicity of these vaccines (ChAd3–NSmut and Ad6-NSmut), for the first time in HCV infected patients. This work also explores whether vaccine-induced T cell responses target in vivo circulating HCV antigens and common naturally occurring epitope variants. Patients with treatment naive chronic genotype 1 HCV infection were vaccinated (i.m.) with ChAd3-NSmut and Ad6-NSmut in a heterologous prime boost schedule, either with or without current IFN and ribavirin (IFN/RBV). Epitope-specific T cell responses were defined by fine mapping using HCV peptides. Circulating viral genomic sequence was determined in vaccinated patients at baseline and at any point of viral relapse. Cross-reactivity of vaccine-induced T cell responses was determined in T cell assays, using peptides corresponding to both circulating host virus and common population HCV epitope variants. An in vitro dendritic cell /T cell priming model was used to identify possible candidates for a cross-reactive vaccine immunogen at the most immunodominant epitope, NS3<sub>1406</sub>. 33 patients were vaccinated. Vaccination was well tolerated. At the highest vaccine dose (2.5 x 10<sup>10</sup>vp) vaccine-induced T cell responses were detectable in 11/20 patients receiving concurrent IFN/RBV and 2/4 patients receiving vaccination alone. In total 14 antigenic targets were identified, 2 of which have not previously been described. However, T cell responses were of lower magnitude and more narrowly focused than those observed in healthy volunteers vaccinated with the same regimen. Analysis of viral sequence showed that in many cases vaccine-induced T cells did not target the circulating virus. At the most immunodominant epitope (NS3<sub>1406</sub>), T cells induced by vaccination failed to target common circulating genotype 1 HCV variants. An in vitro model suggested that in order to target all genotype 1 sequences at this epitope, it would be necessary to insert both a genotype 1a and 1b version of this epitope into a vaccine immunogen. Vaccination with adenoviral vectors induces T cell responses in patients with chronic HCV infection, however immune responses are attenuated compared with healthy volunteers. Ultimately a successful therapeutic or prophylactic vaccine strategy will rely on inducing responses that target conserved or cross-reactive epitopes.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:606354
Date January 2013
CreatorsKelly, Christabel
ContributorsBarnes, Eleanor ; Klenerman, Paul
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:8991c349-7096-4643-ae6a-2e36902c8056

Page generated in 0.0094 seconds