Return to search

Development and fracture behaviour of graded alumina/epoxy joins

Introduction of a composition gradient at a join between two materials of different elastic properties should reduce the stress concentrating effect of the interfacial discontinuity. A crack oriented perpendicular to this elasticity gradient will experience mode-mixity, and possible subsequent crack deflection. Explicit analytical solutions for the stress state at the tip of an angled crack in a graded material of a given finite geometry do not exist, and ongoing crack path development in such a gradient has not been characterised. An infiltration processing technique is developed which allows two materials to be joined through a region of graded composition, of tailored width and composition profile. Composition discontinuities at layer interfaces in a stepped gradient can be tolerated due to the resulting interpenetrating network structured (INS) microstructure. Firing stresses were found to be a limitation of the processing technique, overcome by limiting the steepness of the elastic gradient. Alumina and epoxy resin graded composites were produced and tested under monotonic loading, resulting in stable crack path evolution. Stress-field asymmetry at the tip of a crack oriented perpendicular to an elastic gradient was demonstrated, followed by subsequent crack deflection. Stress intensity factor and deflection angle increase with increasing gradient steepness. Rising R-curve behaviour was demonstrated for all compositions of the INS composite, with initiation and plateau toughness decreasing with increasing epoxy content. Evidence of crack bridging by intact ligaments of the epoxy phase in the crack wake explains this behaviour. Crack deflection towards the epoxy region was anticipated and demonstrated for all gradient configurations. An increase in relative crack depth was seen to increase mode-mixity at the crack-tip and subsequent crack deflection, up to a relative depth of ~0.5. No conclusive evidence was found for the influence of crack bridging on crack deflection. Toughness was shown to increase with the inclusion of a microstructural gradient. Measured toughness within graded samples was shown to be controlled by both the local composition and the volume of bridging ligaments in the crack wake. The optimum gradient should ??? extend over the widest region practical, ??? encompass the widest composition range possible, and ??? demonstrate extrinsic crack extension toughening.

Identiferoai:union.ndltd.org:ADTP/257191
Date January 2005
CreatorsRutgers, Lyndal, Materials Science & Engineering, Faculty of Science, UNSW
PublisherAwarded by:University of New South Wales. School of Materials Science and Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Lyndal Rutgers, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0017 seconds