Today there are numerous methods to slow down a corrosion process of metallic materials. However, due to environmental effects and health risk issues, several traditional corrosion inhibitors have to be phased out. Hence, it is of great importance to develop new corrosion inhibitors that are “green”, safe, smart and multifunctional. In this essay, the focus is on mussel adhesive protein (MAP) and its possibility to reduce the rate of the corrosion process. The protein exhibit great adhesive strength and protective properties, allowing it to adhere to a multitude of different surfaces and is therefore of great interest of corrosion science. The protein Mefp-1, derived from the blue mussel´s foot, had been pre-adsorbed on the carbon steel surface and provided good corrosion inhibition in a basic chloride solution for a short exposure time. The protection was further improved with the assist of iron and ceria ions by formation of protein/ions complexes within the surface films and thus enhanced the corrosion protection for longer exposure time. Ceria nanoparticles were used in order to create a multi-layer composite film with an even higher corrosion protection. The results suggest a denser film compared to previous samples and a more uniform surface.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-143553 |
Date | January 2013 |
Creators | Holmér, Camilla |
Publisher | KTH, Skolan för kemivetenskap (CHE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds