Return to search

CHARACTERIZATION OF NANOCARBON-REINFORCED AND NEAT ADHESIVES IN BONDED SINGLE LAP JOINTS UNDER STATIC AND IMPACT LOADINGS

The effects of high loading rates (HLR), and nano reinforcement on the mechanical response of adhesively-bonded SLJs with composite adherends, subjected to different loading (strain) rates are systematically investigated. The results are then compared to those of neat thermoset resin and thermo-plastic adhesive. More specifically, nano-reinforced and neat resin bonded joints mating carbon/epoxy and glass/epoxy adherends were subjected to tensile loadings under 1.5 and 3 mm/min and tensile impacts at a loading rate of 2.04E+5 mm/min. In some cases, additional tests were conducted under 15, 150, and 1500 mm/min to obtain additional properties gained using the nano-reinforcements for use in the further numerical investigations. The HLR tests were conducted, using a modified instrumented pendulum equipped with a specially designed impact load transfer apparatus. The dispersion of nanoparticles was facilitated using a mechanical stirrer and a three-roll mill machine. The failure mechanisms were studied with a scanning electron microscope.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/36272
Date16 August 2013
CreatorsSoltannia, Babak
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.0022 seconds