Return to search

Studium biologicky relevantních systémů v elektronicky excitovaných stavech / Studium biologicky relevantních systémů v elektronicky excitovaných stavech

Very short lifetimes of excited states of isolated bases in nucleic acids, on the picosec- ond order, are believed to contribute to photostability of the genetic code. When embedded in DNA this behavior becomes more complex, mainly due to their inter- actions via stacking and hydrogen bonding. The DNA photophysiscs is not fully understood yet. It depends e.g. on the conformation and the character of excited states. The studies on smaller systems can help to improve the understanding of these phenomena. The aim of this work was to examine the dynamics of the excited states of the n → π∗ character of the complex of N-methylformamide dimer and two waters. The study was performed using non-adiabatic dynamics simulations with on-the-fly Surface Hopping algorithm based on the potential energy surfaces and non-adiabatic couplings obtained with multi-reference approach. The results show that after the vertical excitation into delocalized S2 state the system relaxes into S1 state within several tens femtoseconds. For majority of the population, the charac- ter of the state then oscillates between localized and delocalized during the whole course of the dynamics. Comparison with calculations with the waters removed in- dicates that the delocalization is caused by waters serving as a bridge between the two chromophores. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:335124
Date January 2014
CreatorsZámečníková, Martina
ContributorsSoldán, Pavel, Bludský, Ota, Nachtigallová, Dana
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0013 seconds