Ces travaux portent sur la résolution successive de deux problèmes inverses en transferts thermiques : l'estimation de la densité de flux en surface d'un matériau puis de la conductivité thermique équivalente d'une couche déposée en surface de ce matériau. Le modèle direct est bidimensionnel orthotrope (géométrie réelle d'un matériau composite), instationnaire, non-linéaire et ses équations sont résolues par éléments finis. Les matériaux étudiés sont les composants face au plasma (tuiles composite carbone-carbone) dans le Tokamak JET. La densité de flux recherchée varie avec une dimension spatiale et avec le temps. La conductivité du dépôt de surface varie spatialement et peut également varier au cours du temps pendant l'expérience (toutes les autres propriétés thermophysiques dépendent de la température). Les deux problèmes inverses sont résolus à l'aide de l'algorithme des gradients conjugués associé à la méthode de l'état adjoint pour le calcul exact du gradient. La donnée expérimentale utilisée pour la résolution du premier problème inverse (estimation de flux surfacique) est le thermogramme fourni par un thermocouple enfoui. Le second problème inverse utilise, lui, les variations spatio-temporelles de la température de surface du dépôt inconnu (thermographie infrarouge) pour identifier sa conductivité. Des calculs de confiance associée aux grandeurs identifiées sont réalisés avec la démarche Monte Carlo. Les méthodes mises au point pendant ces travaux aident à comprendre la dynamique de l'interaction plasma-paroi ainsi que la cinétique de formation des dépôts de carbone sur les composants et aideront au design des composants des machines futures (WEST, ITER). / This work deals with the successive resolution of two inverse heat transfer problems: the estimation of surface heat flux on a material and equivalent thermal conductivity of a surface layer on that material. The direct formulation is bidimensional, orthotropic (real geometry of a composite material), unsteady, non-linear and solved by finite elements. The studied materials are plasma facing components (carbon-carbon composite tiles) from Tokamak JET. The searched heat flux density varies with time and one dimension in space. The surface layers conductivity varies spatially and can vary with time during the experiment (the other thermophysical properties are temperature dependent). The two inverse problems are solved by the conjugate gradient method with the adjoint state method for the exact gradient calculation. The experimental data used for the first inverse problem resolution (surface heat flux estimation) is the thermogram provided by an embedded thermocouple. The second inverse problem uses the space and time variations of the surface temperature of the unknown surface layer (infrared thermography) for the conductivity identification. The confidence calculations associated to the estimated values are done by the Monte Carlo approach. The method developed during this thesis helps to the understanding of the plasma-wall interaction dynamic, as well as the kinetic of the surface carbon layer formation on the plasma facing components, and will be helpful to the design of the components of the future machines (WEST, ITER).
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4739 |
Date | 27 September 2013 |
Creators | Gaspar, Jonathan |
Contributors | Aix-Marseille, Le Niliot, Christophe, Rigollet, Fabrice |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds