Despite the remarkable success of adoptive T cell therapy in the treatment of melanoma and hematological malignancies, therapeutic capacity in a broad range of solid tumours is impaired due to immunosuppressive events that render tumour-specific T cells unable to persist and kill transformed cells. To address some of the limitations of ACT in solid tumours, our laboratory has developed a therapeutic modality utilizing oncolytic virus, which expresses a tumour-associated antigen, known as an oncolytic viral vaccine (OVV), in combination with tumour specific central memory T cells. With this therapeutic approach (ACT), we can achieve robust in vivo expansion of transferred cells resulting in the complete and durable tumour regression in multiple solid murine tumour models. However, we demonstrate that the curative potential is lost when the tumour stage and burden increase as expanded transferred cells differentiate to a dysfunctional state resulting in the progressive decline in the tumour-specific CD8+ T cell response. Thus, we believe that restoring the T cell response in late-stage tumours will lead to enhanced curative potential of ACT in late-stage tumours. We have previously shown that HDACi, MS-275, can enhance the therapeutic capacity of a T cell-based therapy in an aggressive brain tumour model. In addition, concomitant delivery of MS-275 with ACT ensures durable cures through immunomodulatory mechanisms. Strikingly, concomitant delivery of MS-275, a class 1 histone deacetylase inhibitor (HDACi), with ACT in late-stage tumours completely restores the transferred T cell response to similar levels observed in early-stage tumours resulting in the complete regression of advance-stage tumours. Furthermore, MS-275 enhanced the proliferative capacity and tumour-specific cytotoxic function of transferred cells, independently of tumour stage, type and mouse strain. Interestingly, we did not observe a complete reversal of T cell dysfunction, but rather observed that MS-275 conferred unique properties to T cells as the expression of some markers typically associated with T cell dysfunction was enhanced in addition to persistence and proliferation capacity. Moreover, concomitant delivery of MS-275 also restored the therapeutic capacity of endogenously primed tumour-specific CD8+ T cells expanded by an OVV in late-stage tumours, demonstrating the potential for general use for MS-275 in T cell-based therapies. Our data suggests the use of HDACi may potentiate T cell-based immunotherapies to overcome tumour-mediated T cell dysfunction in advanced stage solid tumours. / Thesis / Master of Science in Medical Sciences (MSMS)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26329 |
Date | January 2021 |
Creators | Brown, Dominique |
Contributors | Wan, Yonghong, Medicine |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds