Return to search

DEVELOPMENT OF FREE-LABEL SENSING IN PLASTIC MICROFLUIDIC PLATFORMS USING PULSED STREAMING POTENTIALS (PSP)

This work deals with the development of a new label-free detection technique called Pulsed Streaming Potential (PSP). Its novelty relies on the adaptation of a classical electrokinetic phenomenon (streaming potential) into a tool which can evaluate molecular interplay in label-free fashion. Implementation of PSP to microfluidic platforms allowed the label-free sensing of binding events to plastic (modified and unmodified) surfaces. It was demonstrated the use of real time PSP in plastic microfluidic platforms for determination of kinetic parameters of the interaction of proteins and plastic surfaces. Moreover, initial change of PSP after adsorption of proteins showed to be proportional to the bulk concentration of proteins and it was used for quantification of Lysozyme in the nanomolar range. Several approaches were studied to manipulate the surface of microfluidic channels in order to improve selectivity of PSP through reduction of non-specific adsorption. These approaches included the fabrication of composite surface of polyacrilic acid (PAA) and polyethylene glycol acrylate (PEGA) on cyclic olefin copolymer microchannels, as well as adsorption of nanospheres on COC-PEGA channels.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1206
Date09 May 2011
CreatorsLuna, Vera Fernando
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0016 seconds