A comparison of performance between tradition support vector machine (SVM), single kernel, multiple kernel learning (MKL), and modern deep learning (DL) classifiers are observed in this thesis. The goal is to implement different machine-learning classification system for object detection of three dimensional (3D) Light Detection and Ranging (LiDAR) data. The linear SVM, non linear single kernel, and MKL requires hand crafted features for training and testing their algorithm. The DL approach learns the features itself and trains the algorithm. At the end of these studies, an assessment of all the different classification methods are shown.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4340 |
Date | 10 August 2018 |
Creators | Reza, Tasmia |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds