Return to search

Investigation into the diversity of antifungal aerobic endospore-forming bacteria associated with bulk and crop rhizosphere soil.

Members of the genus Bacillus are mainly Gram positive, aerobic rod shaped, endospore-forming bacteria that are increasingly being recognised for their ability to promote plant growth and antagonise fungal pathogens. From a biological control perspective, Bacillus spp. strains that produce antifungal compounds are of particular interest. In this study, aerobic endospore-formers were isolated from an undisturbed indigenous grassland soil and screened for antifungal activity and other plant growth promoting traits. Endospore-formers were also isolated from rhizosphere soil associated with the roots of maize, wheat and kale grown in pots containing soil from the same grassland site. Microbial diversity amongst isolates showing antifungal activity was investigated using different molecular fingerprinting methods, namely, intergenic transcribed spacer–PCR (ITS-PCR), random amplified polymorphic DNA-PCR (RAPD-PCR) and 16S rRNA gene amplification and sequencing. Characterization of the active antimicrobial compound(s) associated with selected isolates was also attempted.
Prior to isolating from bulk and rhizosphere soils, samples were pre-heated to eliminate heat sensitive vegetative cells. Mean endospore counts were; wheat rhizosphere, Log 6.03 c.f.u g-1 soil; maize rhizosphere, Log 5.88 c.f.u g-1 soil; kale rhizosphere Log 5.90 c.f.u g-1 soil; and bulk soil Log 5.67 c.f.u g-1soil. A total of three hundred and eighty-four isolates were screened for antagonism towards Rhizoctonia solani using dual-culture plate bioassays. Thirty four of the isolates (~9%) mostly isolated from the bulk soil inhibited R. solani at varying degrees. Differences in antimicrobial interactions were apparent in in vitro bioassay; supposedly due to different concentrations and/or types of antimicrobial compounds. Biochemical tests for amylase, cellulase, chitinase, and proteinase activity, siderophore production and inorganic phosphate solubilisation were conducted. None of the isolates possessed all of these attributes and only a few showed multiple traits. Ninety-one percent of the isolates exhibited proteinase activity, 76% were able to hydrolyze starch whereas only four displayed cellulase activity. Only four isolates from the bulk-soil were capable of solubilising inorganic phosphate.
ITS-PCR and 16S rRNA gene sequence analysis showed high levels of genetic homology amongst isolates and the majority were closely associated with representatives of the B. cereus group. Isolate C76 was the exception, being closely matched with B. subtilis. ITS-PCR banding
profile was useful for distinguishing between species but did not distinguish within species. RAPD-PCR distinguished finer levels of genetic diversity between and within sample sets, with primer OPG-11 showing the greatest levels of heterogeneity. DNA extraction methods and the influence of template DNA dilution were investigated to determine their influence on RAPD-PCR analysis reproducibility. Prominent bands were comparable for crude template- and kit-extracted DNA but slight changes in band intensity and in some instances, additional faint bands were observed. At the highest DNA concentrations tested (7 μg/ml), further bands with molecular weights above 2.5 kbp were apparent. Strict standardization of PCR conditions greatly reduced variability of the RAPD-PCR analysis.
Isolates from the different sample sets were screened for the presence of genetic markers associated with the biosynthesis of zwittermicin A, an aminopolyol antibiotic produced by some members of the B. cereus group. In an initial screen only one isolate, W96, yielded PCR amplicons consistent with those previously reported in the literature for the zwittermicin A genes. Later a further sixteen isolates grouped with W96 on the basis of the RAPD-PCR fingerprinting profiles, were screened for the presence of these genes. Of these, only six showed PCR amplification products similar to W96. Sequence homology testing against the GenBank database confirmed the presence of the zwittermicin A genes in these isolates. Isolate W96 was selected for further extraction and characterization of its antifungal compound(s). However, after culturing in various broth media cell free supernatants of W96 failed to show antifungal activity in vitro even when the supernatants were concentrated 20-fold.
These findings provide a general overview of the diversity of aerobic endospore-forming bacteria present in an undisturbed indigenous grassland soil that exhibited antifungal activity in vitro and the limited influence tested crop rhizospheres have on this diversity. Combined use of ITS-PCR, 16S rRNA sequencing and RAPD-PCR techniques served as a rapid and effective means of grouping isolates for further investigations of their potential use as biocontrol agents and plant growth promoting rhizobacteria. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/8057
Date January 2011
CreatorsMusoke, Jolly.
ContributorsHunter, Charles H.
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds