Return to search

Mean Pressure Gradient Effects on the Performance of Ramjet Cavity Stabilized Flames

An experimental investigation was conducted on premixed cavity stabilized flames in a high-speed ramjet engine, while varying the mean pressure gradients. The ramjet cavity was designed with a backward-facing step and an aft ramp for flame stabilization in regimes with high Reynolds numbers. To study the effects of mean pressure gradients on the engine performance, the ramjet engine underwent variations in wall geometry to create converging, diverging, and nominal configurations. The reacting flow fields and flame dynamics were captured using high-speed, simultaneous particle image velocimetry (PIV) and chemiluminescence imaging diagnostics. The study found that imposing a larger favorable pressure gradient led to a reduction in the recirculation zone and altered shear layer dynamics, resulting in an increased drag on the cavity. Additionally, a stronger favorable pressure gradient excited a shear layer instability mode with a Strouhal number of St = 0.1. The results from proper orthogonal decomposition (POD) analysis indicate that the instability mode comprised large-scale oscillations occupying the entire cavity flow region, indicating that the excited oscillations were due to a global vortex shedding instability under non-reacting conditions. The findings demonstrate that the mean pressure gradient can significantly influence the performance and stability of the ramjet cavity flame, which is crucial for designing high-speed air-breathing propulsion systems such as dual-mode scramjets.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2679
Date01 January 2023
CreatorsThornton, Mason
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0016 seconds