This thesis examines the particle capture, fibre wetting and droplet flow processes within wet filters collecting solid and liquid aerosols and within filters collecting only liquid aerosols. The processes involved in this type of filtration were examined through a series of experiments and models developed to describe the behaviour of fibre/liquid systems. This work can be summarized in 4 categories: (1) The bounce and immediate re-entrainment of liquid and solid monodisperse aerosols under a stable filtration regime (pre cake formation) by wet and dry fibrous filters. In this work it was found that the solid particles generally exhibited a lower fractional filtration efficiency than liquid particles (of the same size), although this difference decreased in the smaller size fractions. However, for the wet filtration regime (each fibre of the filter was coated by a film of water), no significant difference in filtration efficiency was detectable between solid and liquid aerosols. Either the bounce effect of the particles is inhibited by the liquid film, or the filtration conditions in the wet filter are so different that the aerosol properties are less significant with respect to capture. (2) A microscopic study of the effect of fibre orientation on the fibre wetting process and flow of liquid droplets along filter fibres when subjected to airflow and gravity forces was conducted. The flow of the liquid collected by the fibres was observed and measured using a specially developed micro-cell, detailed in the thesis. The experimental results were compared to a theoretical model developed to describe the flow of droplets on fibres. The theory and experimental results showed a good agreement. A sensitivity analysis of the model was performed which showed the droplet radius to be the most significant parameter. The model has the potential to improve filter self-cleaning and minimise water use. (3) An experimental study of the capture of solid and liquid (oil) aerosols on fibrous filters wetted with water. Variable quantities of liquid irrigation were used, and the possibility for subsequent fibre regeneration after clogging or drying was also studied. It was found that self-cleaning (removal of solid aerosols by water) occurred even under heavily dust-laden conditions, and post evaporation of water. With the collection of oil aerosols on fibres wetted with water, a predominance of the barrel shaped droplet on the fibre was observed, with oil droplets displacing water droplets (if the oil and fibre combination created a barrel shaped droplet), creating various compound droplets of oil and water not previously reported in literature. (4) An extensive experimental investigation of the wetting processes of fibre/liquid systems during air filtration (when drag and gravitational forces are acting) has shown many important features, including droplet extension, oscillatory motion, and detachment from fibres as airflow velocity increases. The droplet oscillation is believed to be induced by the onset of the transition from laminar to turbulent flow as droplet size increases. To model such oscillation it was necessary to create a new conceptual model to account for the forces both inducing and preventing such oscillation. The agreement between the model and experimental results is satisfactory for both the radial and transverse oscillations.
Identifer | oai:union.ndltd.org:ADTP/195336 |
Date | January 2004 |
Creators | Mullins, Benjamin James, n/a |
Publisher | Griffith University. School of Environmental Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.gu.edu.au/disclaimer.html), Copyright Benjamin James Mullins |
Page generated in 0.0017 seconds