Return to search

Effects of Molecular Structure of the Oxidation Products of Reactive Atmospheric Hydrocarbons on the Formation of Secondary Organic Particulate Matter, Including the Effects of Water

Organic aerosols have significant effects on human health, air quality and climate. Secondary organic aerosols (SOA) are produced by the oxidation of primary-volatile organic compounds (VOC). For example, α-pinene reacts with oxidants such as hydroxyl radical (OH), ozone (O3), and nitrate radical (NO3), accounting for a significant portion of total organic aerosol in the atmosphere. Experimental studies have shown that the oxidation process between α-pinene and ozone has the most significant impact in the formation of SOA (Hoffmann et al., 1997). Most of the models used to predict SOA formation, however, are limited in that they neglect the role of water due to uncertainty about the structure and nature of organic compounds, in addition to uncertainty about the effect of varying relative humidity (RH) on atmospheric organic particulate matter (OPM) (Kanakidou et al., 2005). For this study, structures of organic compounds involved in the formation of SOA are estimated, and the role of water uptake is incorporated in the process. The Combinatorial Aerosol Formation Model (CAFM) is a deterministic model used to determine the amount of organic mass (Mo µg m-3) formation based on the predicted structures. Results show that the amount of SOA that is formed is almost negligible when the amount of parent hydrocarbon involved in the reaction is low (i.e. around 5 µg m-3), especially at lower RH. Observing compounds with a greater number of polar groups (alcohol and carboxylic acid) indicates that structure has a significant effect on organic mass formation. This observation is in agreement with the fact that the more hydrophilic the compound is, the higher RH, leading to more condensation into the PM phase.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-1616
Date24 January 2013
CreatorsNiakan, Negar
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0022 seconds