Return to search

Design and computational analysis of aerodynamics in an annular cascade

The modem gas turbine engine is one of the most demanding operating environments in all of technology and has enabled the air transport industry to thrive. The highest efficiency levels are only obtainable by operating at temperatures that are well above the melting points of most materials inside the engine. Therefore, aggressive film cooling schemes and advanced materials enginee1ing are required to protect vulnerable surfaces from the hot jet streams inside a turbine. However, secondary flow effects in turbines and their interactions with these film cooling schemes are still not completely understood. To add to the body of knowledge in this area, a multi-purpose transonic annular cascade was designed to test, among other things, pressure losses across the cascade and endwall film cooling effectiveness both with and without the effects of a stator wake generator. Geometries were based off the first-stage rotors of the turbine of the General Electric Energy Efficient Engine (GE-E^3) a NASA-funded high-efficiency aviation engine developed in the late 1970s and early 1980s. This cascade geometry was impo1ted into a three-dimensional Computational Fluid Dynamics (CFD) program to obtain pressure and Mach number contour plots along various sections of interest in the cascade, for direct comparison to literature values and the GE-E3 reports. These initial CFD results compared favorably with literature values and suggest that the cascade design has high potential for use in the afore-mentioned experiments, though a more robust CFD analysis will be performed before a final decision is made.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-1738
Date01 January 2008
CreatorsMcDonald, William J.
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
SourceHIM 1990-2015

Page generated in 0.002 seconds