Les problèmes militaires sont très complexes et plusieurs d'entre eux ne peuvent être résolues en utilisant les techniques d'optimisation classiques. Le problème visé par ce travail de maîtrise, est celui de la gestion en temps réel des ressources d'une frégate. Ces ressources doivent être assignées convenablement et dans les délais requis de manière à contrer les menaces et augmenter ainsi la probabilité de survie de la frégate. Pour contribuer à résoudre un tel problème, nous avons convenu tout d'abord, d'analyser les menaces une à une et de déterminer lesquelles sont les plus importantes et quel plan d'attaque il convient d'élaborer pour les contrer. Nous avons introduit à cet effet, l'évaluation de ``l'engageabilité'' qui permet de considérer différents facteurs déterminants dans l'allocation des ressources. Nous avons ensuite formalisé le problème en question, en utilisant un modèle formel emprunté à la satisfaction des contraintes (CSP=constraint Satisfaction problem). Finalement, nous avons montré dans quelles circonstances il est avantageux d'utiliser cette évaluation de l'engageabilité dans un processus d'allocation de ressources en temps réel et dans un environnement stochastique, le tout relativement à la survie de la frégate. / Military problems are very complex and they can be solved by different artificial intelligence techniques. In this thesis, we address the problem of weapon-targets assignment for a frigate. To defend efficiently the ship, we have to analyze each threat and determine which resource assigns against it. For that purpose, we utilize the engageability assessment to consider different characteristics; useful in the resources assignment. To this end, a mathematical model named Constraint Satisfaction Problem (CSP) is employed. This framework allows formalizing the problem to ensure the constraint consistency and to sort threats in importance order. We tried this algorithm on different types of weapon-target assignment problems. Finally, we demonstrate the advantage of engageability assessment on the weapon-target assignment problem in real time and stochastic environment.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/19728 |
Date | 13 April 2018 |
Creators | Gagné, Olivier |
Contributors | Chaib-Draa, Brahim |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 114 p., application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.002 seconds