Characterization of the 5' flanking region of rainbow trout ki-ras gene was begun with the cloning and sequencing of this region by the inverse PCR technique and dideoxynucleotide chain termination method. In total, a nucleotide sequence of 1080 bp upstream from the first coding ATG was sequenced. Although this region showed certain promoter elements, it does not share common features with other mammalian ras promoters, which lack the TATA and contain multiple GC boxes with Spl binding activities. In contrast, this region in trout ras contains typical TATA and CCAAT boxes. This structural difference of the trout ki-ras promoter from that of other mammalian ras genes may suggest that different transcriptional regulation mechanisms of the ras ger.e are used at various levels in evolution.
The chromatin structure of the trout ki-ras gene was studied by probing invivo for DNase I hypersensitive sites. To overcome the difficulties of using the traditional indirect end labeling method for a single-copy gene, the technique of ligation-mediated PCR was applied. No hypersensitive sites were observed at or near the codon 12 region of the gene, either in normal (protooncogene) or tumor (oncogene) tissue from the liver. This result suggests that the local chromatin structure of trout ki-ras gene may not be an important factor for codon 12 mutations induced by genotoxins, and that changes of chromatin structure are unlikely to be promoted after tumor formation. Studies by micrococcal nuclease demonstrate that this ras gene, in the region around 12, lacks ordered nucleosome positioning or may be even free of nucleosomes. Such an irregular organization of ras oncogenic chromatin would resemble that of many other "normal", highly active eukaryotic genes.
The intrinsic affinity of trout ki-ras gene for aflatoxin B₁ was determined by in vitro alkylation experiments. Exon 1 of the gene was synthesized and labeled at the 5'end of the coding strand by the PCR technique. Taking advantage of the selective cleavage of AFB1-DNA adducts by piperidine under alkali conditions, the frequency of AFB 1 attack to each guanyl site was determined by densitometric scans after the cleaved fragments were electrophoresed on sequencing gels. The results demonstrated that two guanyl sites of codon 12 had differential affinity to AFBl, the more 5' G was relatively inaccessible but the more 3' G was accessible, indicating that the sequence selectivity of AFB I may contribute to the preference of the initial adduction in vivo. / Graduation date: 1993
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/36253 |
Date | 06 May 1993 |
Creators | Liang, Xiaoshan |
Contributors | van Holde, Kensal E. |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0019 seconds