Return to search

Adhesion of silver nanoparticle amendments to ceramic water filters

Silver nanoparticles (Ag NPs) are frequently added as a disinfectant to ceramic filters used for household drinking water treatment. To provide suspension phase particle stability, Ag NPs can be synthesized using a number of different molecules to cap the metal core. The goal of this doctoral work was to advance the fundamental understanding of how stabilizing agents influence the attachment and detachment of Ag NPs from ceramic water filters. To achieve this goal, deposition experiments onto Al₂O₃ membranes and clay-based ceramic filters were performed using Ag NPs stabilized by three different agents: citrate, polyvinylpyrrolidone (PVP), and branched polyethylenimine (BPEI). Laboratory and field- scale filtration experiments were also conducted to evaluate the removal of Ag NPs from ceramics under different water conditions -- the presence of hardness and natural organic matter (NOM). Citrate-stabilized Ag NPs were found to have the highest attachment densities, regardless of filter material. Differing attachment densities for the three types of Ag NPs were extensively explained using a combination of classic Derjaguin, Landau, Verwey and Overbeek (DLVO) theory, steric forces, and particle-particle interaction energy calculations. A multilevel statistical model was built to describe the removal of Ag NPs from ceramic water filters under different water conditions. The type of Ag NP was found to affect the initial release of Ag from the filters, while the interaction of the type of Ag NP and water were found to affect the rate of removal. Hardness and NOM prolonged the release of Ag from ceramic water filters.

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/31352
Date17 September 2015
CreatorsMikelonis, Anne Marie
ContributorsLawler, Desmond F.
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis, text
Formatapplication/pdf

Page generated in 0.002 seconds