Return to search

Investigating the functions of PGC-1 isoforms in retinal pigment epithelia metabolism and their implications on age-related macular degeneration

INTRODUCTION: Retinal Pigment Epithelia (RPE) degeneration is a key event in the development of age-related macular degeneration (AMD). RPE dysfunction in AMD is thought to occur through the accumulation of reactive oxygen species (ROS) and oxidative damage. The transcriptional co-activators, PGC-1α and PGC-1β, are important regulators of mitochondrial biogenesis and anti-oxidant capacity. Our group has previously shown that the PGC-1α protein promotes RPE oxidative metabolism and that overexpression of the PGC-1α gene protects cells from AMD-associated pro-oxidants. On the other hand, PGC-1β gene expression has been found to be upregulated in patients with neovascular AMD, and in-vitro overexpression of PGC-1β damages cells and induces pro-oxidant conditions.
OBJECTIVE: Given the divergence of PGC-1α and PGC-1β functions in RPE and their clinical relevance in AMD pathogenesis, this project will seek to investigate the impact of the upregulation of PGC-1α and PGC-1β in RPE metabolism. PGC-1α will be upregulated through treatment with compound ZLN005. A new methodology for PGC-1β expression will be developed to closely modulate in-vitro PGC-1β induction.
METHODS: In-vitro experiments were performed on the ARPE-19 cell line. Cells were treated with 10µM of ZLN005 for 24 hours. Oxidative stress was induced by exposure to H2O2 and NaIO3 under serum-free conditions. Lactate dehydrogenase (LDH) levels were used to quantify cell death. Quantitative PCR (qPCR) and Western Blot were performed to measure changes in gene and protein expression respectively. Superoxide production by the mitochondria was measured to evaluate ROS levels within the cell. Intravitreal injections of 20µM ZLN005 were performed on eight-week old male C57BL/6J mice. After 24 and 72 hours of treatment, the mice were euthanized and the enucleated eyes were dissected to obtain the RPE and neural retina layers. Total RNA was extracted from these layers and qPCR was performed to measure gene expression. A tetracycline-inducible PGC-1β plasmid was designed and transfected into ARPE-19 cells. The cells were exposed to 0.01-100µg/ml doxycycline for 48-hours and qPCR was used to measure gene expression. Transfected cells were treated with ZLN005 and cell death upon exposure to oxidative stress was quantified.
RESULTS: Gene expression analysis on ARPE-19 cells treated with ZLN005 showed robust upregulation of PGC-1α, PGC-1β and their associated transcription factors and enzymes. Induction of PGC-1α at the protein level was also confirmed. ZLN005 efficiently protected ARPE-19 cells from H2O2 and NaIO3 cytotoxicity and its protection was negated in PGC-1α-silenced cells. Treatment with ZLN005 also decreased mitochondrial superoxide production. ZLN005 intravitreal injections were safely administered to the animals and did not cause cataracts or other damage to the ocular tissues. While statistical significance in gene expression changes was limited due to the small sample size, anti-oxidants GPX1 and TXN2, and electron transport chain gene, ATP50, were found to be potentially induced in the neuro-retina, while FOXO3 was found to be downregulated. Evaluation of our novel tetracycline-inducible PGC-1β adenoviral vector showed that upregulation of PGC-1β was efficiently controlled by the addition of doxycycline to transfected cells. Upon exposure to H2O2, transfected cells treated with doxycycline experienced greater cell death than transfected cells not exposed to doxycycline. ZLN005 treatment was able to decrease cell death in both conditions.
CONCLUSION: The present study shows that ZLN005 efficiently protects RPE cells from oxidative damage through selective induction of PGC-1α. While still preliminary, the in-vivo study indicates that ZLN005 is safe to be injected into the eye and may be able to increase the expression of mito-protective and anti-oxidant genes in the neuronal retina. In addition, our design of the tetracycline inducible PGC-1β plasmid allows for tight control over PGC-1β expression through doxycycline addition. Upregulation of PGC-1β at levels similar to those observed in clinical conditions caused increased pro-oxidant induced cell death and treatment with ZLN005 was able to protect against cell death. / 2021-06-30T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/30901
Date03 July 2018
CreatorsSatish, Sangeeta
ContributorsToth, Louis J., Saint-Geniez, Magali
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0023 seconds