Return to search

Computational Fluid Dynamics for Modeling and Simulation of Intraocular Drug Delivery and Wall Shear Stress in Pulsatile Flow

Indiana University-Purdue University Indianapolis (IUPUI) / The thesis includes two application studies of computational
fluid dynamics. The first is new and efficient drug delivery to the posterior part of the eye, a growing health necessity worldwide. Current treatment of eye diseases, such as age-related macular degeneration (AMD), relies on repeated intravitreal injections of drug-containing solutions. Such a drug delivery has significant cant drawbacks, including short drug life, vital medical service, and high medical costs. In this study, we explore a new approach of controlled drug delivery by introducing unique porous implants. Computational modeling contains physiological and anatomical traits. We simulate the IgG1 Fab drug delivery to the posterior eye to evaluate the effectiveness of the porous implants to control the drug delivery. The computational model was validated by established computation results from independent studies and experimental data. Overall, the results indicate that therapeutic drug levels in the posterior eye are sustained for
eight weeks, similar to those performed with intravitreal injection of the same drug.
We evaluate the effects of the porous implant on the time evaluation of the drug
concentrations in the sclera, choroid, and retina layers of the eye. Subsequent simulations were carried out with varying porosity values of a porous episcleral implant.
Our computational results reveal that the time evolution of drug concentration is
distinctively correlated to drug source location and pore size. The response of this
porous implant for controlled drug delivery applications was examined. A correlation
between porosity and fluid properties for the porous implants was revealed in this
study. The second application lays in the computational modeling of the oscillating

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/23571
Date08 1900
CreatorsAbootorabi, Seyedalireza
ContributorsYu, Huidan, Nematollahi, Khosrow, Yokota, Hiroki
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds