We consider Sequential Monte Carlo Approximate Bayesian Computation (SMC ABC) as a method of calibration for the use of agent based models in market micro-structure. To date, there are no successful calibrations of agent based models to high frequency trading data. Here we test whether a more sophisticated calibration technique, SMC ABC, will achieve this feat on one of the leading agent based models in high frequency trading literature (the Preis-Golke-Paul-Schneider Agent Based Model (Preis et al., 2006)). We find that, although SMC ABC's naive approach of updating distributions can successfully calibrate simple toy models, such as autoregressive moving average models, it fails to calibrate this agent based model for high frequency trading. This may be for two key reasons, either the parameters of the model are not uniquely identifiable given the model output or the SMC ABC rejection mechanism results in information loss rendering parameters unidentifiable given insucient summary statistics.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/33699 |
Date | 04 August 2021 |
Creators | Goosen, Kelly |
Contributors | Gebbie, Timothy |
Publisher | Faculty of Science, Department of Statistical Sciences |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Master Thesis, Masters, MSc |
Format | application/pdf |
Page generated in 0.0021 seconds