Return to search

論太陽黑子均衡的可能性--代理人基人工股票市場的應用 / On the Plausibility of Sunspot Equilibria: An Analysis Based on Agent-Based Artifical Stock Markets

The existence of sunspots or sunspot equilibria has been debated for several decades on its influence in the field of Economics. While models of sunspots or sunspot equilibria have fitted well for some subsets of empirical features, it comes at a cost of moving further away from economic believability and robustness. Studies on the theoretical plausibility of sunspot equilibria have been addressed extensively in several different economic models, but exist almost entirely within the framework of the homogeneous rational expectations equilibrium devised of representative agents. This framework shapes later arising learning approaches to sunspot equilibria. These models have proposed various ways of learning, but they deal mainly with the learning of representative agents. Models of adaptive learning with heterogeneous agents, however, enable us to explicitly tackle coordination issues, such as the coordination mechanism of expectations. This is certainly desirable since sunspots are often used as a coordination device of expectations. In this dissertation, we continue this line of research, investigating the plausibility of sunspot equilibria in stock markets within the framework of heterogeneous agents and the dynamic relationship between sunspot variables and stock returns. We adopt an Agent-based Computational Approach, now known as Agent-based Computational Economics or ACE, to study the plausibility of sunspot equilibria. More specifically, we deal with this issue in the context of an Agent-based Artificial Stock Market (AASM). We contemplate AASMs to be highly suitable to the issue we examine here. Currently, none of the theoretical, empirical, experimental, or simulation models of sunspot equilibria directly capture sunspots within a stock market composed of heterogeneous agents. We conducted three series of experiments to examine this issue. From the results of these three series of simulations, we observed that sunspot variables generally do not have influence on market dynamics. This indicates that sunspot variables remain largely exogenous to the system. Furthermore, we traced the evolution of agents' beliefs and examined their consistency with the observed aggregate market behavior. Additionally, this dissertation takes the advantage of and investigates the micro-macro relationship within the market. We argue that a full understanding of the dynamic linkage between sunspot variables and stock returns cannot be accomplished unless the feedback relationship between individual behaviors, at the micro view, and aggregate phenomena, at the macro view, is well understood / The existence of sunspots or sunspot equilibria has been debated for several decades on its influence in the field of Economics. While models of sunspots or sunspot equilibria have fitted well for some subsets of empirical features, it comes at a cost of moving further away from economic believability and robustness. Studies on the theoretical plausibility of sunspot equilibria have been addressed extensively in several different economic models, but exist almost entirely within the framework of the homogeneous rational expectations equilibrium devised of representative agents. This framework shapes later arising learning approaches to sunspot equilibria. These models have proposed various ways of learning, but they deal mainly with the learning of representative agents. Models of adaptive learning with heterogeneous agents, however, enable us to explicitly tackle coordination issues, such as the coordination mechanism of expectations. This is certainly desirable since sunspots are often used as a coordination device of expectations. In this dissertation, we continue this line of research, investigating the plausibility of sunspot equilibria in stock markets within the framework of heterogeneous agents and the dynamic relationship between sunspot variables and stock returns. We adopt an Agent-based Computational Approach, now known as Agent-based Computational Economics or ACE, to study the plausibility of sunspot equilibria. More specifically, we deal with this issue in the context of an Agent-based Artificial Stock Market (AASM). We contemplate AASMs to be highly suitable to the issue we examine here. Currently, none of the theoretical, empirical, experimental, or simulation models of sunspot equilibria directly capture sunspots within a stock market composed of heterogeneous agents. We conducted three series of experiments to examine this issue. From the results of these three series of simulations, we observed that sunspot variables generally do not have influence on market dynamics. This indicates that sunspot variables remain largely exogenous to the system. Furthermore, we traced the evolution of agents' beliefs and examined their consistency with the observed aggregate market behavior. Additionally, this dissertation takes the advantage of and investigates the micro-macro relationship within the market. We argue that a full understanding of the dynamic linkage between sunspot variables and stock returns cannot be accomplished unless the feedback relationship between individual behaviors, at the micro view, and aggregate phenomena, at the macro view, is well understood.

Identiferoai:union.ndltd.org:CHENGCHI/G0912580381
Creators周佩蓉, Chou,peijung
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language中文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0023 seconds