Return to search

Um agente autônomo baseado em aprendizagem por reforço direcionado à meta / An autonomous agent based on goal-directed reinforcement learning

Uma meta procurada em inteligência artificial (IA) é o desenvolvimento de mecanismos inteligentes capazes de cumprir com objetivos preestabelecidos, de forma totalmente independente, em ambientes dinâmicos e complexos. Uma recente vertente das pesquisas em IA, os agentes autônomos, vem conseguindo resultados cada vez mais promissores para o cumprimento desta meta. A motivação deste trabalho é a proposição e implementação de um agente que aprenda a executar tarefas, sem a interferência de um tutor, em um ambiente não estruturado. A tarefa prática proposta para testar o agente é a navegação de um robô móvel em ambientes com diferentes configurações, e cujas estruturas são inicialmente desconhecidas pelo agente. O paradigma de aprendizagem por reforço, através de variações dos métodos de diferença temporal, foi utilizado para implementar o agente descrito nesta pesquisa. O resultado final obtido foi um agente autônomo que utiliza um algoritmo simples para desempenhar propriedades como: aprendizagem a partir de tabula rasa, aprendizagem incremental, planejamento deliberativo, comportamento reativo, capacidade de melhoria do desempenho e habilidade para gerenciar múltiplos objetivos. O agente proposto também apresenta um desempenho promissor em ambientes cuja estrutura se altera com o tempo, porém diante de certas situações seus comportamentos em tais ambientes tendem a se tornar inconsistentes. / One of the current goals of research in Artificial Intelligence is the proposition of intelligent entities that are able to reach a particular target in a dynamic and complex environment without help of a tutor. This objective has been becoming reality through the propositions of the autonomous agents. Thus, the main motivation of this work is to propose and implement an autonomous agent that can match the mentioned goals. This agent, a mobile robot, has to navigate in environments which are initially unknown and may have different structures. The agent learns through one of the main reinforcement learning strategies: temporal difference. The proposed autonomous employs a simple learning mechanisms with the following features: learns incrementally from tabula rasa, executes deliberative and reactive planning, improves its performance through interactions with the environment, and manages multiple objectives. The agent presented promising results when moving in a dynamic environment. However, there are situations in which the agent do not follow this last property.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-31102017-111839
Date16 December 1998
CreatorsArthur Plínio de Souza Braga
ContributorsAluízio Fausto Ribeiro Araújo, André Carlos Ponce de Leon Ferreira de Carvalho, Marcelo Godoy Simões
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds