Return to search

Functional and molecular changes of mitochondria in human aging: observations in dividing tissues

Studies in a number of human tissues have revealed that the activities of mitochondrial respiratory chain enzyme complexes decline during the aging process. Other studies have suggested that aging increases the frequency of mitochondrial DNA (mtDNA) mutation and leads to the accumulation of mutant mtDNA species, mainly those with large deletions and point mutations. Although the mitochondrial theory of aging may be more applicable to post mitotic tissues, abnormalities of mtDNA have also been reported in tissues which retain a mitotic capacity. Fresh tissues from elderly patients are difficult to obtain and only a limited number of studies on biochemical examination of respiratory chain enzyme complex activities have been carried out. Prostate tissue is readily available in elderly male subjects because of the high prevalence of benign prostatic hypertrophy in this sub-group of the population, and endoscopic surgery is routinely performed for excision of the diseased prostate. In this study, mitochondrial respiratory function and the mtDNA mutations in prostate tissues of elderly patients (aged from 56 to 92) were studied in 24 subjects. This included the measurement of the activities of the respiratory chain enzyme complexes and screening for mitochondrial point mutations and deletions at sites commonly affected in neurodegenerative diseases. (For complete summary open document)

Identiferoai:union.ndltd.org:ADTP/245109
Date January 2000
CreatorsWeng, Shan
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access

Page generated in 0.0021 seconds