Return to search

Histone post-translational modifications in the brain of the senescence-accelerated prone 8 mouse. / CUHK electronic theses & dissertations collection

In this study, the brain of senescence accelerated mouse prone 8 (SAMP8) mice model was adopted to investigate PTMs state (especially methylation patterns) of core histones (H2A, H2B, H3 and H4). Seven methylated sites (H3K24, H3K27, H3K36, H3K79, H3R128, H4K20 and H2A R89) were detected by tandem matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis. The methylation of H3K27 and H3K36 demonstrated a modulating relationship and methylated H3K27 might contribute to the hypermethylation state and gene repression in aged brain. Western blotting results showed that mono-methylated H4K20 decreased during SAMP8 mice aging and di-methylated H3K79 decreased in the brain of 12-month-old SAMP8 mice compared with age-matched senescence accelerated-resistant mouse (SAMR1) control. Di-methylated H3K79 could express in neuron cells of cerebral cortex and hippocampus. Whereas, the number of H3K79 methylation negative cells was higher in the cortex of 12-month old SAMP8 mice than that of age-matched control SAMR1 mice. Chromatin immunoprecipitation (ChIP) result indicated homeodomain transcription factor Pbx1 isoform 1 (Pbx1), transcription factors and transcriptional regulator proteins, such as T-box isoform 20, TetR family precursor BAZ2B and ribosomal protein, were recruited to methylated H3K79 site. Therefore, a model of methylated H3K79 on gene transcriptional regulation was proposed. Furthermore, the consequences of decreased H3K79 methylation in Neuro-2a (N2a) cells were investigated via transfection with Dot1 (disruptor of telomeric silencing) siRNA. After transfection, N2a cells displayed shorter neurite and less dendrite. Proteomic change in the N2a cells provided convincing evidence for the multi-function of decreased H3K79 methylation on transcriptional regulation, protein translation and folding, stress response and DNA breaks repair, which would contribute to brain dysfunction during neurodegenerative disease or aging. / Nowadays, many countries including China are experiencing aging populations. Aging has become the major risk factor for many diseases, such as neurodegenerative disease. The studies on the role of epigenetics in the aging process have grown tremendously in recent years. However, no systematic investigations have provided the information on histone post-translational modifications (PTMs) in aged brain and the roles of histone PTMs in brain aging are still unknown. / This study gave a new insight into the link between histone PTMs and brain aging. It could provide the experimental evidence for future studies and help us to better understand aging or neurodegenerative disease at epigenetic level. Furthermore, it could benefit for setting up the strategies for epigenetic therapy to neurodegenerative disease. / Wang, Chunmei. / Adviser: Ngai Saiming. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaf 136). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344613
Date January 2009
ContributorsWang, Chunmei, Chinese University of Hong Kong Graduate School. Division of Life Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xx, 136 leaves : ill. (some col.))
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.003 seconds