Return to search

Study of Ultrasonic Treatment of Clostridium on Bio-hydrogen Producing Effect

The resources on earth are limited; thus, the demand for energy, goods and materials is surging because of the growth of the advanced technology and population. The issues of using the resources effectively and changing them into a useful energy are then important. Taiwan creates a vast amount of agricultural waste every year. The traditional way of eliminating the agricultural waste would be burned and buried. However, it is not only the agricultural waste cannot be reused and recycled, but also the problem of air pollution occurred. The objectives of this thesis are thus to transfer the agricultural waste into a useful energy.
This study contents two parts. The first part changes the agricultural waste into sugar. The agricultural waste is full of wood fiber and can be transformed to sugar by a microorganism method. A cane which is a common agricultural waste is used; the wood fiber in cane will be added to the thermostable cellulolytic bacterial Geobacillus thermoleovorans T4 isolated from sugar refinery wastewater in southern Taiwan. T4 can convert wood fiber into sugar. Experimental results showed that the rate of reducing sugar is 13.77%. The second part studies the biological hydrogen production by Clostridium acetobutylicum ATCC 824, and the sugar will be added into the process. Also, this study uses ultrasonic treatment in the biological hydrogen production and calculates the natural frequency of ATCC 824. The experiment is designed using the Taguchi method for increasing hydrogen production, hydrogen production rate and hydrogen production efficiency by using an ultrasonic treatment to treat C. acetobutylicum ATCC 824. It is showed that the best combination is temperature 37¢XC, ultrasonic frequency 0.5 MHz, ultrasonic intensity 136 mW/cm2, exposure time 10 s, pH 7.5 and bacterial concentration 20%. This study can apply in bio-energy and fermentation food producing.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0829112-153222
Date29 August 2012
CreatorsKuo, Huan-Chen
ContributorsYi-Cheng Huang, Bo-Tsuen Wang, Shiuh-Kuang Yang, Shao-Yi Hsia, Jyin-Wen Cheng
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0829112-153222
Rightsuser_define, Copyright information available at source archive

Page generated in 0.0024 seconds