Return to search

Riparian and rangeland soil-vegetation-atmosphere interactions in southeastern Arizona

In the riparian corridor of the San Pedro River in southeastern Arizona, the fluxes of water and energy over three riparian vegetation groupings were monitored and modeled in order to determine their annual water use and water sources. In situ micrometeorological and soil moisture measurements were made from 1996-1998 at a floodplain grassland site composed mainly of the perennial floodplain grass, Sporobolus wrightii (sacaton), and a tree/shrub grouping dominated by Prosopis velutina (mesquite). The results indicate that the grassland obtained water only from the near-surface (recent precipitation), while the mesquite accessed moisture from deeper in the vadose zone and/or from the water table. Both of these sites exhibited little interaction with the underlying groundwater, suggesting that the majority of the groundwater use from riparian vegetation is limited to the areas of dense mesquite and the forest gallery adjacent to the river. Measurements of the forest gallery water use composed mainly of Populus fremontii (cottonwood) and Salix gooddingii (willow) were available for some shorter term periods in 1997. These measurements were used to calibrate the Penman-Monteith model for evaporation in order to determine the water use from the forest gallery for the entire growing season. The total seasonal water use from the forest was considerably less than potential evaporation estimates. Observations of soil moisture under two rangeland sites in the San Pedro Basin were examined in order to determine the magnitude and the depth of root zone recharge characteristics in this semiarid region. Intermittent TDR observations made from 1990 to 1998 show that deeper root zone recharge occurred primarily during the wintertime, when the plants were senescent and evaporation demand was diminished. A physically-based variably-saturated flow model was used to determine the wintertime recharge. Using an automatic calibration algorithm, the model proved capable of reproducing the observations with small error. Simulated wintertime infiltration amounts indicated that substantial, deeper root zone recharge did occur during wet winters, but that the large year-to-year variability of this recharge implies that deeper-rooted plants would still need access to moisture in shallow root zone.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/284006
Date January 1999
CreatorsScott, Russell Lawrence
ContributorsShuttleworth, W. James
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds