Return to search

Molekulare Mechanismen einer wechselseitigen Kontrolle der Arabidopsis-Agrobacterium-Interaktion / Bidirectional control of Arabidopsis-Agrobacteria interactions; an analysis of underlying molecular mechansisms.

Phytohormone sind wichtige Signalmoleküle bei der durch Agrobacterium tumefaciens vermittelten Tumorgenese. Zum einen sind sie direkt am onkogenen Prozess beteiligt, indem sie die Proliferation von transformierten Zellen fördern und physiologische Anpassungen im entstehenden Tumor steuern. Auf der anderen Seite vermitteln Phytohormone aber auch Abwehrreaktionen der Pflanze als Folge eines Befalls mit onkogenen Pathogenen. Um diese verschiedenen Wirkungen der Phytohormone während der Tumorgenese besser zu verstehen, wurde die Genexpression durch Microarrays zu unterschiedlichen Zeitpunken dieses Prozesses an der Modellpflanze Arabidopsis thaliana charakterisiert und die Rolle ausgewählter Phytohormone, wie Abscisinsäure, Salizylsäure, Jasmonsäure, Ethylen und H2O2 durch Mutanten in entsprechenden Signalwegen funktionell untersucht. Die Ergebnisse dieser Arbeit deuten darauf hin, dass die bekannten Pathogenabwehrwege bei Befall durch onkogene Agrobacterien mit einer zeitlichen Verzögerung aktiviert werden. Diese Verzögerung wird wahrscheinlich durch das vom Bakterium abgegebene Auxin reguliert, und somit könnte dieses Auxin die Integration der T-DNA indirekt fördern. Sind die pflanzlichen Abwehrmechanismen jedoch vor dem Transformationsprozess aktiviert, wie z.B. in cpr5–Mutanten, kann die T-DNA nicht integrieren und es entsteht kein Tumor. Beim Wildtyp akkumulieren in Folge der T-DNA Integration mit Pathogenabwehr assoziierte Signalmoleküle, wie H2O2, Ethylen und Salizylsäure, nicht aber Jasmonsäure. Die Analyse des Tumorwachstums an Mutanten mit unterschiedlichen Defekten in diesen Signalwegen zeigte jedoch, daß Ethylen und Salizylsäure keinen Einfluß auf das Tumorwachstum haben. Vielmehr regulieren Ethylen und H2O2 morphologische Anpassungen und Adaptationen an Trockenstress in Tumoren. Die von Agrobacterium tumefaciens induzierten Tumore beziehen außer Nährstoffe, vor allem Wasser von der Wirtspflanze. Das Fehlen einer intakten Epidermis oder Kutikula führt allerdings zu unkontrolliertem Wasserverlust. Da aber weder der Tumor noch die Pflanze welken, muss eine Trockenstressadaptation stattzufinden. In dieser Arbeit konnte gezeigt werden, dass die Phytohormone Abscisinsäure (ABA) und Ethylen an diesem Prozess beteiligt sind. Zum einen regulieren sie die Akkumulation von Osmoregulatoren, sowie Suberineinlagerungen in den äußeren Zellschichten des Tumors, wodurch eine dem Periderm ähnliche Schutzschicht entsteht. Diese Suberinisierung wird im Tumor wahrschein-lich von ABA induziert, wie Experimente an Arabidopsis Wurzeln belegten. Die Microarray-Analysen ergaben, dass im Tumor ein spezielles Muster an ABA- und Trockenstress-induzierten Markergene exprimiert wird, sowie einigen Aquaporinen, die den erhöhten Wasserbedarf des Tumors regulieren könnten. Das verminderte Tumorwachstum an abi- and aba-Mutanten belegt die Bedeutung von ABA-Signalen für die Homeostase des Wasser-haushalts im Tumor. / Phytohormones are important signaling molecules involved in Agrobacterium tumefaciens mediated tumor development. On the one hand, they are directly involved in the infection process by supporting proliferation of transformed plant cells and mediating physiological adaptations of the developing tumor. On the other hand, phytohormones also mediate defense responses of the host plant upon bacterial infection. In order to get further insight into these supplementary roles of phytohormones during tumor development, microarray techniques have been used to analyze changes in gene expression of Arabidosis thaliana upon infection with Agrobacterium tumefaciens at distinct time points during tumor development. The functional relevance of selected phytohormones, e.g. abscisic acid, salicylic acid, jasmonic acid, ethylene and H2O2 was analyzed by the use of Arabidopsis mutants with defects in the respective signaling pathways. This work suggests a delayed activation of the well known defence response pathways to take place upon infection by agrobacteria. This delay is most likely mediated by auxin, which is synthesized and secreted by the bacteria. Hence, auxin indirectly promotes T-DNA integration by causing delay of the plant´s defence responses. However, if pathogen defence is active before agrobacterial infection, e.g. in cpr5 mutant plants, T-DNA integration is prevented and tumor growth cannot be observed. Signaling molecules associated with defence responses, e.g. H2O2, ethylene and salicylic acid, but not jasmonic acid accumulate due to T-DNA integration in wild type plants. However, Arabidopsis mutants with defects along the ethylene or salicylic acid signalling pathways revealed wild type like tumor development neglecting their involvement in tumor associated defence responses. Rather, this work supports the hypothesis that ethylene and H2O2 are involved in regulating tumor morphology and drought stress adaptations. Crown gall tumours induced by Agrobacterium tumefaciens represent a sink that is provided with nutrients and water by the host plant. The lack of an intact epidermis or cuticle results in uncontrolled loss of water. However, neither the tumor nor the host plant display wilting. This phenomenon points to drought stress adaptations in both, tumours and the host plant. In order to understand the protecting molecular mechanisms against desiccation, the gene expression pattern of Arabidopsis thaliana tumors was compared with the profile of stress metabolites: Arabidopsis tumors accumulated high amounts of ABA, the ethylene precursor ACC, osmoprotectants and form a suberized periderm-like layer. Suberization of the outer tumor cell layers most likely is mediated by ABA since external application of ABA induced suberization of Arabidopsis roots. However, the expression level of the classical marker genes, known to respond to drought stress and/or ABA, was lower in tumors. Instead another set of drought and/or ABA-inducible genes, was higher transcribed. Elevated transcription of several ABA-dependent aquaporin genes might indicate that ABA controls the water balance of the tumor. The retarded tumor growth on abi and aba mutant plants underlined the importance of a tumor-specific ABA signaling pathway. Taken together, we propose that ABA is an important signal for protection of tumors against desiccation and thus supports tumor development.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2441
Date January 2008
CreatorsEfetova, Marina
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds