Surface expression of recombinant proteins has attracted a lot of attention due to its potential in applications such as enzyme production, vaccine delivery and bioremediation. Autotransporters have been used for surface expression of a variety of proteins, but the expression systems reported in literature have typically been inflexible and incapable of detecting proteolysis, thereby limiting surface expression yield. In this thesis, a modular surface expression system, utilizing dual tag detection, was therefore created. It was based on the adhesin involved in diffuse adherence (AIDA-I) autotransporter, and was here used to express the model proteins SefA and H:gm on the cell surface of Escherichia coli. Due to the dual tag detection system, proteolysed H:gm could be successfully verified on the cell surface. By optimizing cultivation conditions, surface expression yield of SefA was increased by 300 %, and proteolysis reduced by 33 %. While proteolysis could not be eliminated completely, the work presented in this thesis is a major step towards a general system for surface expression of a wide range of proteins in varied applications. / <p>QC 20130506</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-121561 |
Date | January 2013 |
Creators | Jarmander, Johan |
Publisher | KTH, Bioprocessteknik, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-BIO-Report, 1654-2312 ; 2013:7 |
Page generated in 0.0027 seconds