Return to search

Detection of Harmful Chemicals in the Air using Portable Membrane Inlet Mass Spectrometry

Portable mass spectrometry has become an important analytical tool for chemical detection and identification outside of a lab setting. Many variations and applications have been developed to benefit various fields of science. Membrane inlet mass spectrometry is used to allow certain analytes to pass into the mass spectrometer without breaking vacuum or letting in large particulate matter. These two important analytical tools have been applied to the detection of harmful chemicals in the air. Earth-based separations and reverse gas stack modelling are useful mathematical tools that can be used to locate the source of a chemical release by back calculation. Earth-based separations studies the way different molecules will diffuse and separate through the air. Reverse gas stack modelling refers to the concentration differences of a chemical in relation to its distance from its source. These four analytical techniques can be combined to quickly and accurately locate various harmful chemical releases. The same system can be used for many applications and has been tested to detect harmful chemicals within and air-handling system. The monitoring of air-handling systems can greatly reduce the threat of harm to the building occupants by detecting hazardous chemicals and shutting off the air flow to minimize human exposure.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1248526
Date08 1900
CreatorsKretsch, Amanda Renee
ContributorsVerbeck, Guido F., Kelber, Jeffry A., Slaughter, LeGrande M.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatviii, 47 pages, Text
RightsPublic, Kretsch, Amanda Renee, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0021 seconds