Discharge coefficients are an important parameter in the prediction of the air displacement performance of ventilation outlets and in the design of ventilation ducts. / Discharge coefficients of a wooden ventilation duct 8.54 metres in length and of a constant 0.17 m$ sp2$ cross sectional area were measured. Four different outlet shapes and 3 aperture ratios of each shape were tested. A split plot experimental design was used to evaluate the effect of outlet shape, outlet size, and distance from the fan on discharge coefficient. The relationship between duct performance characteristics and discharge coefficient was examined. A mathematical equation to predict the discharge coefficient was developed and tested. / Discharge coefficient values measured ranged from 0.19 to 1.25 depending on the aperture ratio and distance from the fan. Outlet shape had no significant effect. The apparent effects of aperture ratio and size are due to the effects of head ratio. The equation predicting the discharge coefficient had a maximum error of 5 percent for the aperture ratios of 0.5 and 1.0, and 15 percent at an aperture ratio of 1.5.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.59271 |
Date | January 1990 |
Creators | Kinsman, Roger Gordon |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Science (Department of Agricultural Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001070609, proquestno: AAIMM63468, Theses scanned by UMI/ProQuest. |
Page generated in 0.0018 seconds