Human practices have resulted in great damage to the environment. Carbon-depletion, water and air pollution, as well as global warming are examples of the environmental footprints caused by several industries and their related applications. Detergency (cleaning) is widely practiced operation in household, industry and institutional sectors and thus consumes significant amounts of water, energy and chemicals and, therefore, contributes appreciably to the environmental destruction. This process is still not fully understood, on a molecular level, and not acceptably optimised. Therefore, this study is a contribution toward a better fundamental understanding and optimisation of protein stain removal from interfaces, which may ultimately result in the development of environmentally friendly and sustainable cleaning products and technologies. In this research, the cleaning of rubisco, a grassy protein stain, from different surfaces (hydrophobic, hydrophilic, and dyed) using different cleaning agent formulations was investigated. These studies encompassed experimental work and fundamental analysis in terms of mathematical modelling. The results revealed a consistent correlation between enzyme adsorption kinetics and stain cleanability. Higher adsorption and desorption absolute rates ( a k and d k ) resulted in higher enzyme mobility and thus higher stain cleanability regardless of the enzyme adsorbed amount. Surface chemistry underlying the stain has indirectly influenced stain cleanability through the alteration of enzyme adsorption kinetics. Such fundamental findings may aid in screening enzyme candidates for detergent formulations and may also assist in designing easily cleanable surfaces. Another fundamental finding is the cooperative cleaning mechanism of surfactant and enzyme of rubisco stain from different interfaces. The break down of intermolecular physical bonds between interfacial rubisco molecules by surfactants and the break down of the intramolecular covalent bonds by enzyme resulted in a higher protein displacement from interfaces. The overall protein removal by the two different actions of surfactant and enzyme showed a superiority of a biosurfactant-enzyme formulation. This finding may have significant implications on developing sustainable detergents that have superior cleaning performance and no or minimal environmental hazard. Overall, the findings reported in this Ph.D. thesis may form a basis for further comprehensive scientific research, which may ultimately provide detergent market with more efficient and optimum cleaning products and technologies.
Identifer | oai:union.ndltd.org:ADTP/279165 |
Creators | Sagheer Ahmed Onaizi |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Page generated in 0.0024 seconds