Return to search

Flow and pollutant dispersion over idealized urban street canyons using large-eddy simulation

Flows and pollutant dispersion over flat rural terrain have been investigated for decades. However, our understanding of their behaviours over urban areas is rather limited. Most cases have either focused on street level or in the roughness sub-layer (RSL) of urban boundary layer (UBL). Whereas, only a handful of studies have looked into the coupling between street-level and UBL-core dynamics, and their effects on pollutant dispersion.

In this thesis, computational fluid dynamics (CFD) is employed to examine the flows and pollutant transport in and over urban roughness. Idealised two-dimensional (2D) street canyons are used as the basic units fabricating hypothetical urban surfaces. A ground-level passive and chemically inert pollutant source is applied to simulate the flows and pollutant dispersion over rough surfaces in isothermal condition. Large-eddy simulation (LES) with the one-equation subgrid-scale model is used to solve explicitly the broad range of scales in turbulent flows. Arrays of idealized street canyons of both uniform and non-uniform building height are used to formulate a unified theory for the flows and pollutant dispersion over urban areas of different morphology. The geometry of roughness elements is controlled by the building-height-to-street-width (aspect) ratio (0.083 ≤ AR ≤ 2) and/or the building height variability (BHV = 0.2, 0.4 and 0.6), in which the characteristic regimes of skimming flow, wake-interference and isolated roughness are covered.

A detailed analysis on the roof-level turbulence structure reveals parcels of low-speed air masses in the streamwise flows and narrow high-speed down-drafts in the urban canopy layer, signifying the momentum entrainment into the street canyons. The decelerating streamwise flows in turn initiate up-drafts carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in 2D street canyons. Turbulent transport processes, in the form of ejection and sweep, are the key events governing the exchanges of air and pollutant of street canyon. Air exchange rate (ACH) along the roof level is dominated by turbulent transport, in particular over narrow street canyons.

The LES results show that both the turbulence level and ACH increase with increasing aerodynamic resistance defined in term of the Fanning friction factor. At the same AR, BHV greatly increases the friction factor and the ACH in dense built areas (AR ≤ 0.25). The turbulence intensity is peaked on the windward side of street canyons that does not overlap with the maximum velocity gradient near the leeward building corners, suggesting the importance of background turbulence in street-level ventilation. Over the building roughness, pollutant plume dispersion after the ground-level area source in cross flows resumes the self-similar Gaussian shape in the vertical direction in which the vertical plume coverage is proportional to the square root of downwind distance in the streamwise direction. Moreover, the vertical dispersion coefficient is proportional to the one-fourth power of friction factor over idealised street canyons. Conclusively, friction factor can be used to parametrise ventilation and pollutant dispersion over urban areas. / published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/206698
Date January 2013
CreatorsWong, Ching-chi, 黃精治
ContributorsLiu, CH
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsCreative Commons: Attribution 3.0 Hong Kong License, The author retains all proprietary rights, (such as patent rights) and the right to use in future works.
RelationHKU Theses Online (HKUTO)

Page generated in 0.0013 seconds