Det här projektet optimerar ett system som använder den statiska sökalgoritmen A* för att fåen autonom drönare att kunna undvika rörliga och målsökande hinder på sin färd emot enangiven måldestination. Optimeringen bygger på tidigare arbeten där bland annat ModelPredictive Control (MPC) har en stor påverkan på det implementerade systemet.Resultatet av projektet visar att det är möjligt att optimera ett system som använder sig av enstatisk planeringsalgoritm genom lokal planering inom det område drönaren har kunskap om.Ett högt planeringstempo där drönaren enbart följer första delen i den genererade planen,möjliggör att drönaren hela tiden kan anpassa sig till förändringar i omgivningen och undvikakollision. / This project optimizes a system that uses the static search algorithm A* to enable anautonomous drone to avoid moving and target-seeking obstacles on its way to a specifieddestination. The optimization is based on previous work where Model Predictive Control(MPC) has a major impact on the implemented system.The result of the project shows that it is possible to optimize a system using a static planningalgorithm through local planning in the area of which the drone has knowledge. A highplanning pace enables the drone to follow the first part of the generated plan, which meansthat the drone can constantly adapt to changes in the surroundings and avoid collisions.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-100931 |
Date | January 2022 |
Creators | Gustafsson, Philip |
Publisher | Örebro universitet, Institutionen för naturvetenskap och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds