Return to search

Towards Detecting Atmospheric Coherent Structures using Small Fixed-Wing Unmanned Aircraft

The theory of Lagrangian Coherent Structures (LCS) enables prediction of material transport by turbulent winds, such as those observed in the Earth's Atmospheric Boundary Layer. In this dissertation, both theory and experimental methods are developed for utilizing small fixed-wing unmanned aircraft systems (UAS) in detecting these atmospheric coherent structures. The dissertation begins by presenting relevant literature on both LCS and airborne wind estimation. Because model-based wind estimation inherently depends on high quality models, a Flight Dynamic Model (FDM) suitable for a small fixed-wing aircraft in turbulent wind is derived in detail. In this presentation, some new theoretical concepts are introduced concerning the proper treatment of spatial wind gradients, and a critical review of existing theories is presented. To enable model-based wind estimation experiments, an experimental approach is detailed for identifying a FDM for a small UAS by combining existing computational aerodynamic and data-driven approaches. Additionally, a methodology for determining wind estimation error directly resulting from dynamic modeling choices is presented and demonstrated. Next, some model-based wind estimation results are presented utilizing the experimentally identified FDM, accompanied by a discussion of model fidelity concerns and other experimental issues. Finally, an algorithm for detecting LCS from a single circling fixed-wing UAS is developed and demonstrated in an Observing System Simulation Experiment. The dissertation concludes by summarizing these contributions and recommending future paths for continuing research. / Doctor of Philosophy / In a natural or man-made disaster, first responders depend on accurate predictions of where the wind might carry hazardous material. A mathematical theory of Lagrangian Coherent Structures (LCS) has shown promise in ocean environments to improve these predictions, and the theory is also applicable to atmospheric flows near the Earth’s surface. This dissertation presents both theoretical and experimental research efforts towards employing small fixed-wing unmanned aircraft systems (UAS) to detect coherent structures in the Atmospheric Boundary Layer (ABL). These UAS fit several “gaps” in available sensing technology: a small aircraft responds significantly to wind gusts, can be steered to regions of interest, and can be flown in dangerous environments without risking the pilot’s safety. A key focus of this dissertation is to improve the quality of airborne wind measurements provided by inexpensive UAS, specifically by leveraging mathematical models of the aircraft. The dissertation opens by presenting the motivation for this research and existing literature on the topics. Next, a detailed derivation of a suitable Flight Dynamic Model (FDM) for a fixed-wing aircraft in a turbulent wind field is presented. Special attention is paid to the theories for including aerodynamic effects of flying in non-uniform winds. In preparation for wind measurement experiments, a practical method for obtaining better quality FDMs is presented which combines theoretically based and data-driven approaches. A study into the wind-measurement error incurred solely by mathematical modeling is presented, focusing on simplified forms of the FDM which are common in aerospace engineering. Wind estimates which utilize our best available model are presented, accompanied by discussions of the model accuracy and additional wind measurement concerns. A method is developed to detect coherent structures from a circling UAS which is providing wind information, presumably via accurate model based estimation. The dissertation concludes by discussing these conclusions and directions for future research which have been identified during these pursuits.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/90667
Date26 June 2019
CreatorsMcClelland, Hunter Grant
ContributorsAerospace and Ocean Engineering, Woolsey, Craig A., Ross, Shane D., Farhood, Mazen H., Sultan, Cornel
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds