Return to search

Characteristics of Sound Radiation from Turbulent Premixed Flames

Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise.

The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL).

The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f^2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)^2, which resembles the source term in the wave equation.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/19703
Date08 November 2007
CreatorsRajaram, Rajesh
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds