Return to search

An Automated Method for Optimizing Compressor Blade Tuning

Because blades in jet engine compressors are subject to dynamic loads based on the engine's speed, it is essential that the blades are properly "tuned" to avoid resonance at those frequencies to ensure safe operation of the engine. The tuning process can be time consuming for designers because there are many parameters controlling the geometry of the blade and, therefore, its resonance frequencies. Humans cannot easily optimize design spaces consisting of multiple variables, but optimization algorithms can effectively optimize a design space with any number of design variables. Automated blade tuning can reduce design time while increasing the fidelity and robustness of the design. Using surrogate modeling techniques and gradient-free optimization algorithms, this thesis presents a method for automating the tuning process of an airfoil. Surrogate models are generated to relate airfoil geometry to the modal frequencies of the airfoil. These surrogates enable rapid exploration of the entire design space. The optimization algorithm uses a novel objective function that accounts for the contribution of every mode's value at a specific operating speed on a Campbell diagram. When the optimization converges on a solution, the new blade parameters are output to the designer for review. This optimization guarantees a feasible solution for tuning of a blade. With 21 geometric parameters controlling the shape of the blade, the geometry for an optimally tuned blade can be determined within 20 minutes.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-7230
Date01 March 2016
CreatorsHinkle, Kurt Berlin
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Theses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0021 seconds