Approved for public release; distribution is unlimited / The conversion to hydrogen as a naval aviation fuel would allow for independence on fuel cost and supply, as hydrogen is globally accessible. The biggest obstacle to using hydrogen is its very low density, a property that even combined with hydrogen's high heat of combustion still results in very large fuel tanks. Liquid hydrogen (LH2) with its higher density would still require a larger volume than kerosene for the aircraft to achieve the same mission. Another problem with using LH2 is its cryogenic nature, a property that requires complicated fuel tanks and more careful fueling. A design study has been conducted for this report to determine the feasibility of using LH2. A Lockheed-Martin P-3 Orion configuration was modified to accommodate LH2 as its fuel, its mission parameters kept unchanged. It is concluded from this design study that using LH2 would significantly limit the amount of usable cabin space, as the fuel tank takes up 65% of the aircraft's internal volume. Despite the large LH2 tank weight of about 14,865lb, due to the low fuel weight the aircraft's takeoff gross weight is only 113,646lb, about 80% of the current petroleum-fueled P-3. The total cost of LH2 as fuel is currently undetermined. / Ensign, United States Navy
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1009 |
Date | 06 1900 |
Creators | Ciaravino, John S. |
Contributors | Biblarz, Oscar, Hobson, Garth, Aeronautical Engineering |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xviii, 49 p. : ill. (some col.) ;, application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted. |
Page generated in 0.0018 seconds