This master's thesis deals with the design and implementation of an algorithm for high-speed network packet filtering. The main goal was to provide hardware architecture, which would support large rule sets and could be used in 100 Gbps networks. The system has been designed with respect to the implementation on an FPGA card and time-space complexity trade-off. Properties of the system have been evaluated using various available rule sets. Due to the highly optimized and deep pipelined architecture it was possible to reach high working frequency (above 220 MHz) together with considerable memory reduction (on average about 72% for compared algorithms). It is also possible to efficiently store up to five thousands of filtering rules on an FPGA with only 8% of on-chip memory utilization. The architecture allows high-speed network packet filtering at wire-speed of 100 Gbps.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255423 |
Date | January 2016 |
Creators | Kučera, Jan |
Contributors | Matoušek, Jiří, Kořenek, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0026 seconds