Return to search

Adsorption of Blood Proteins onto Polysaccharide Surfaces

In this study, surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) were combined to investigate the adsorption behavior of two platelet adhesion-related blood proteins, human serum albumin (HSA) and human serum fibrinogen (HSF), on two polysaccharide materials used for hemodialysis membrane applications: regenerated cellulose and cellulose acetate. The study aims to provide insight into the design of novel hemocompatible polysaccharide materials. Information such as real-time adsorption curves, adsorbed amounts, and water contents of the protein layers were obtained and analyzed. The results suggested 1) monolayer adsorption of HSA on both cellulose and cellulose acetate, possibly with different HSA conformations; 2) a multilayer of HSF or some degree of end-on adsorption on both surfaces. The study of HSA adsorption onto cellulose acetate surfaces with different degrees of substitution indicated that the change in content of acetyl groups may not be the main factor governing the adsorbed HSA amount but may affect the conformation of adsorbed HSA molecules. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/78309
Date10 January 2016
CreatorsTan, Xinyi
ContributorsMacromolecular Science and Engineering, Roman, Maren, Edgar, Kevin J., Esker, Alan R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.003 seconds