Return to search

Characterization of Behavioral Profiles for Inbred P and NP and Congenic P.NP and NP.P Rats

Indiana University-Purdue University Indianapolis (IUPUI) / Alcoholism inheritance rates have been estimated as high as 60% in a human population. Many significant features of alcohol dependence have been replicated in rodent animal models of alcoholism, however not in totality. These animal models include inbred preferring (iP) and nonpreferring (iNP) rat types. Congenic rats have been engineered from the iP and iNP strains whereby a P congenic rat has in its genome a well-chosen chromosomal portion taken from an NP rat (P.NP) and, reciprocally, an NP congenic rat has acquired the analogous DNA from a P rat (NP.P). In this case, a quantitative trait locus (QTL) from chromosome 4 is the donor genetic material for the congenic rats. It is of great interest to further study this chromosome 4 QTL because it has been found to control a significant portion of ethanol consumption behavior in iP and iNP rats. This study aimed to behaviorally profile the iP, iNP and reciprocal congenic rats. As a result of the behavioral profiling of these genetically related groups, some conclusions could be made regarding which behaviors appear to be controlled by the chromosome 4 donor DNA.This study primarily utilized the Multivariate Concentric Square Field apparatus (MCSF) to characterize behavioral profiles for the inbred and congenic rats. The Open field (OF) and Elevated plus maze (EPM) supported this effort. The MCSF is valuable in that it allows for the animals to interact within an environment that has ethological value. The 12 different zones that make up the field are characterized by some functional quality in terms of type and duration of behavior performed, etc. The behavioral data is aggregated and finally represented in terms of five functional categories, the elements of the behavioral profile: general activity, exploratory activity, risk assessment, risk taking, and shelter seeking. The study hypotheses were shaped by prior research suggesting that iPs should display lower general activity and risk taking strategy than iNPs in the MCSF. Inbred Ps should be more active in the OF and spend more time in the center of the EPM. Generally, it is expected that the iP QTL confer behavioral phenotypes to the iNP strain that deviate toward a "P" behavioral phenotype and reciprocally, the iNP QTL confer behavioral phenotypes to the iP strain that deviate toward an "NP" behavioral phenotype. The results showed that iP rats performed more risk assessment and risk taking behavior and less shelter seeking and anxiety-like behavior than iNP rats. It followed that P.NP congenic rats significantly downgraded their risk assessment and risk taking behavior when compared to iP rats. This decrease can be attributed to the chromosome 4 QTL donated from the iNP breed. All together this study concludes that risk assessment and risk taking behavior in the iP rats is controlled by the same DNA region that, in part, determines voluntary intake of ethanol consumption. Further fine mapping of the QTL region should help in discovering if the same DNA sequences that influence ethanol intake also significantly influence risk behavior.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/2924
Date27 August 2012
CreatorsJensen, Meredith
ContributorsGrahame, Nicholas J., Stewart, Robert, Czachowski, Cristine, Roman, Erika
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
Typethesis

Page generated in 0.0025 seconds