Return to search

Exploring Nickel Catalysis in Carbonyl and Alcohol Addition Reactions

The nucleophilic addition of organomagnesium/lithium reagents to aldehydes and ketones has long enabled the synthesis of valuable alcohol derivatives; however, these types of transformations are often plagued by poor functional group tolerance and require harsh reaction conditions. The direct coupling of carbonyls and alcohols with aryl halides is an appealing alternative to access secondary alcohol products. However, this necessitates a formal C-H bond activation which is not well established in the literature.
Chapter 1 provides a detailed literature background of the transition metal-catalyzed functionalization of carbonyls and alcohols. The work discussed in Chapter 2 of this thesis demonstrates the addition of aryl halides to aryl and aliphatic aldehydes and alcohols providing secondary alcohol products in moderate to high yields. Key to the success of this transformation was the implementation of underexplored and readily synthesized 1,5-diaza-3,7-diphosphacyclooctane (P2N2) ligands.
Chapter 3 extends the methodology established in chapter 2 and aims to get a preliminary understanding of the application and mechanism of the reaction described above. For this purpose, pharmaceutically relevant isatin substrates are derivatized, providing access to substitution at the 3-position. Coupling isatins with aryl halides yields 3-aryl-3-hydroxy-2-oxindole products which are scaffolds for many natural product derivatives. Through high-throughput experimentation (HTE), we were able to
discover that 1,2-addition at the carbonyl position of isatins is highly compatible with our established system and led us to develop a modest scope as well as gain useful mechanistic insights for this coupling.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/43676
Date03 June 2022
CreatorsNasim, Amrah
ContributorsNewman, Stephen
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0022 seconds